

Ain Shams University Faculty of Education Physics Department

Theoretical Study of Hydrogen Storage capacity in Different Types of Nano-cones

Thesis Presented by Mohammad Ahmed Farea Mohsen Al khateeb

For the Doctor of Philosophy Degree of Teacher Preparation in Science (Theoretical Physics)

Supervised by

Prof. Dr. Mohammed Ahmed Kamel

Professor of Theoretical Physics Faculty of Education - Ain Shams University

Dr. Hayam Osman Taha

Associate Professor of Theoretical Physics Faculty of Education - Ain Shams University

Dr. Rasha Ali Ali Mohammed

Lecturer of Theoretical Physics Faculty of Education - Ain Shams University

بسم الله الرحمن الرحيم

حدق الله العظيم

Ain Shams University Faculty of Education Physics Department

Researcher Name: Mohammed Ahmed Farea Mohsen Al-Khateeb

Title of the thesis: Theoretical Study of Hydrogen Storage capacity in Different Types of Nano-cones.

Submitted to: Physics Department, Faculty of Education, Ain Shams University

Supervisors:

- 1- Prof. Dr. Mohammed Ahmed Kamel
- 2- Dr. Hayam Osman Taha
- 3- Dr. Rasha Ali Ali Mohammed

Approval Sheet

Title: "Theoretical Study of Hydrogen Storage capacity in Different Types of Nano-cones"

Candidate: Mohammed Ahmed Farea Mohsen Al-Khateeb

Degree: Doctor of Philosophy degree of Teacher Preparation in Science

(Physics)

Board of Advisors

Approved by

1. Prof. Dr/ Mohammed Ahmed Kamel

Prof. of Theoretical Physics Faculty of Education, Ain Shams University

2. Dr/ Hayam Osman Taha

Associate Professor of Theoretical Physics Faculty of Education, Ain Shams University

3. Dr/ Rasha Ali Ali Mohammed

Lecturer of Theoretical Physics Faculty of Education, Ain Shams University

Date of presentation: / / 2015

Post graduate studies:

Stamp: / / Date of approval: / / 2015

Approval of Faculty Council: / / 2015 Approval of University Council: / / 2015

Contents

	Page
Acknowledgement	i
Special Acknowledgement	iii
List of Tables	iv
List of Figures.	vi
Abbreviations	Xvi
Abstract	xvii
Summary	xviii
<u>Chapter I</u>	
<u>Introduction</u>	
1.1 Current Situation of Energy Sources	1
1.2 Hydrogen as Clean, Efficient, Renewable Energy Carrier	2
1.3 Scientific Challenges And Fundamental Research Needs	4
of on-board Hydrogen Storage	
1.4 Generating Green Electricity	7
1.5 carbon.	11
1.6 Nanocons	12
1.7 Defects	16
1.7.1 Point Defects	17
1.7.2 Line Defects	18
<u>Chapter II</u>	
Theoretical background	
2.1 The Electronic Problem	19
2.1.1 Born-Oppenheimer Approximation	20
2.1.2 Antisymmetric or Pauli Exclusion Principle	21
2.2 Orbital and Slater Determinants	22
2.2.1 Spin Orbitals and Spatial Orbitals	22
2.2.2 Hartree Product	23
2.2.3 Slater Determinants	25
2.3 Hartree-Fock Theory	26

2.3.2 Fock operator	
2.4 Density Functional Theory	
2.4.1 Local Density Approximation	
2.5 Ab Initio Modelling Program Packages	
2.5.1 Gaussian 03 Package	
2.5.2 Basis Sets	•••••
Chapter III	
Literature review	
<u>Literature review</u>	
Literature review	·•··
<u>Chapter IV</u>	
Pure Carbon Nanocones (CNCs)	
4.1 Introduction	
4.2 Computational Methods	
4.3 Results.	
	• • • • •
4.3.1 Geometric structures	
4.3.2. Surface reactivity	
4.3.3 Energy gaps	
4.3.4 HOMOs and LUMOs	
4.3.5 Density of States	
4.4 Conclusion	
· · · · · · · · · · · · · · · · · · ·	
<u>Chapter V</u> Pure Boron Nitride Nanocones (BNNCs	

5.2 Computational Methods
5.3 Results
5.3.1 Geometric structures
5.3.2 Surface reactivity
5.3.3 Energy gaps
5.3.4 HOMOs and LUMOs
5.3.5 Density of States
5.4 Conclusion
Cl. mad an IVI
<u>Chapter VI</u>
Hydrogenated Carbon Nanocones (CNCs)
11 yar og enatea Carbon Ivanocones (CIVCs)
6.1 Introduction
6.2 Computational Methods
6.3 Results
6.3.1 Geometric structures
6.3.2 Adsorption energy of mono-hydrogenation CNCs
6.3.3 Surface reactivity
6.3.4 Energy gaps
6.3.5 HOMOs and LUMOs
6.3.6 Density of States
6.4 Conclusions

<u>Chapter VII</u> <u>Hydrogenated Boron Nitride Nanocones</u>

(BNNCs)

7.1 Introduction	1.
7.2 Computational Methods	14
7.3 Results	14
7.3.1 Geometric structures	14
7.3.2 Adsorption energy of mono-hydrogenation BNNCs	15
7.3.3 The surface reactivity of mono-hydrogenation BNNCs	16
7.3.4 Energy gaps of mono-hydrogenation BNNCs	16
7.3.5 HOMOs and LUMOs of mono-hydrogenation BNNCs	16
7.3.6 Density of states for mono-hydrogenation BNNCs	1'
7.4 Conclusions	18
Conclusions	18
D 4	
References	18
Arabic Summary	

Acknowledgment

Acknowledgment

Before all and above all, many thanks to Allah, the lord of all beings.

I am greatly privileged and honored to have Prof. Dr/

Mohammed Ahmed Kamel, Dr/ Hayam Osman Taha and Dr/

Rasha Ali Ali Mohammed as my supervisors.

My deepest thanks and gratitude to Prof. Dr/ *Mohammed Ahmed Kamel*, Professor of Theoretical Physics, Faculty of Education, Ain Shams University, for his everlasting encouragement, continuous supervision, valuable criticism and fruitful advice which can never be forgotten.

My deepest thanks and gratitude to, **Dr/** *Hayam Osman Taha* Associate professor of Theoretical Physics, Faculty of Education, Ain Shams University, for her continuous supervision, valuable suggestions and everlasting encouragement during this work.

My deepest thanks and gratitude to, **Dr/** Rasha Ali Ali Mohammad Lecturer of Theoretical Physics, Faculty of Education, Ain Shams University, for her continuous supervision, valuable suggestions and everlasting encouragement during this work.

Acknowledgment

Sincere thanks and appreciation to Prof. Dr/ **Mahmoud Yassin**, head of Physics Department, Faculty of Education, Ain Shams University for her everlasting encouragement.

Finally, I would like to thank my parents, my wife (Nagla'a) and my boys Ezz Adeen, Madian, Rawi and Raba'a for their continuous assistance in my life.

Acknowledgment

Special Acknowledgement

My deepest thanks and gratitude to. Dr/ Ahlam Abd El-Monem Ahmed El-Barbary, Associate Professor of Theoretical Physics, Faculty of Education, Ain Shams University, for her suggestion of the problem of research point before departure to Saudi Arabia, (Physics Department, Faculty of Science, Jazan University, KSA), Also for her continuous cussions through calculations, writing my papers and finishing up my thesis. Many thanks for her exerted effort and fruitful help, throughout this research that will never forget and I wish if her name it would be included with the supervisions and wishing her successful academic life.

List of Tables

List of Tables

	Page
Table (4.1): The calculated surface reactivities for CNCs	58
with disclination angles 60^{0} , 120^{0} , 180^{0} , 240^{0} and 300^{0} . All	
dipole moments given by Debye.	
Table (4.2): The calculated energy gaps (E.g) for CNCs	60
with disclination angles 60^{0} , 120^{0} , 180^{0} , 240^{0} and 300^{0} . All	
energy gaps given by ev.	
Table (5.1): The calculated surface reactivities for BNNCs	86
with disclination angles 60^{0} , 120^{0} , 180^{0} , 240^{0} and 300^{0} . All	
dipole moments given by Debye.	
Table (5.2): The calculated energy gaps (E.g) for BNNCs	88
with disclination angles 60^{0} , 120^{0} , 180^{0} , 240^{0} and 300^{0} . All	
energy gaps given by ev.	
Table (6.1): The calculated adsorption energy of mono-	118
hydrogenation CNCs with disclination angles 60°, 120°,	
180° , 240° and 300° at three different sites H ^{S1} , H ^{S2} and	
H ^{S3} . All energies are given by ev.	
Table (6.2): The configuration structures and dipole	120
moments of mono- hydrogenated CNCs with disclination	
angles 60° , 120° , 180° , 240° and 300° at three different	
sites H ^{S1} , H ^{S2} and H ^{S3} . All dipole moments are given by	
Debye.	
Table (6.3): The configuration structures and dipole	122
moments of mono- hydrogenated CNCs with disclination	
angles 60^{0} , 120^{0} , 180^{0} , 240^{0} and 300^{0} at three different	
sites H ^{S1} , H ^{S2} and H ^{S3} . All energies are given by ev.	
Table (7.1): The configuration structures and the	159
adsorption energy of mono- hydrogenated BNNCs-type1	
and type2 for disclination angles 120° and 240°. All	
energies are given by eV.	
Table (7.2): The configuration structures and the	160
adsorption energy of mono- hydrogenated BNNCs-M1	
type1 and BNNCs-M1 type2 for disclination angles 60 ⁰ ,	
180° and 300°. All energies are given by eV.	

List of Tables

Table (7.3): The configuration structures and the	161
adsorption energy of mono- hydrogenated BNNCs-M2	
type1 and BNNCs-M2 type2 for disclination angles 60 ⁰ ,	
180 ^o and 300 ^o . All energies are given by eV.	
Table (7.4): The configuration structures and the dipole	162
moments of mono-hydrogenated BNNCs-Type1 and	
BNNCs-Type2 for disclination angles 120° and 240°. The	
dipole moment is given by Debye.	
Table (7.5): The configuration structures and the dipole	163
moments of mono-hydrogenated BNNCs-M1-Type1 and	
BNNCs-M1-Type2, for disclination angles 60°, 180° and	
300°. The dipole moment is given by Debye.	
Table (7.6): The configuration structures and the dipole	164
moments of mono-hydrogenated BNNCs-M2-Type1 and	
BNNCs-M2-Type2, for disclination angles 60°, 180° and	
300°. The dipole moment is given by Debye.	
Table (7.7): The configuration structures and the energy	166
gaps of mono-hydrogenated BNNCs-Type1 and BNNCs-	
Type2 for disclination angles 120° and 240°. Energies are	
given by eV.	
Table (7.8): The configuration structures and energy gaps	167
of mono-hydrogenated BNNCs-M1-Type1 and BNNCs-	
M1-Type2, for disclination angles 60°, 180° and 300°.	
Energies are given by eV.	
Table (7.9): The configuration structures and energy gaps	168
of mono-hydrogenated BNNCs-M2-Type1 and BNNCs-	
M2-Type2, for disclination angles 60°, 180° and 300°.	
Energies are given by eV.	

List of Figures

List of Figures

	Page
Figure(1.1): (a) a fule cell generates electricity by reacting	9
oxygen, hydrogen ions and electrons. (b) the hydrogen ions	
generated at the anode are swept through a membrane to the	
cathode. This membrane is impermeable to electrons generated	
at the anode.	
Figure 1.2 : Nanocones are carbon-based structures formed by	14
introducing 600 positive disclination defects in two-	
dimensional graphene sheets.	
Figure 1.3: Schematic representations of molecular models of	16
carbon nanocones (a) cone60, (b) cone120, (c) cone180, (d)	
cone240, (e) and (f) cone300.	
Figure 1.4 Point Defects.	17
Figure 1.5 Line defects (Dislocations)	18
Figure 4.1: Structures of carbon nanocones with disclination	52
angle 60^{0} for (a) $C_{45}H_{15}$, (b) $C_{80}H_{20}$, (c) $C_{115}H_{25}$ and (d)	
$C_{170}H_{30}$.	
Figure 4.2: Structures of carbon nanocones with 120 ⁰ angle for	53
(a) $C_{36}H_{12}$, (b) $C_{56}H_{16}$, (c) $C_{92}H_{20}$ and (d) $C_{136}H_{24}$.	
Figure 4.3: Structures of carbon nanocones with 180° angle	54
for (a) $C_{48}H_{12}$, (b) $C_{75}H_{15}$, (c) $C_{102}H_{18}$ and (d) $C_{141}H_{21}$.	
Figure 4.4 : Structures of carbon nanocones with 240 ^o angle for	55
(a) $C_{28}H_8$, (b) $C_{46}H_{10}$, (c) $C_{68}H_{12}$ and (d) $C_{94}H_{14}$.	
Figure 4.5 : Structures of carbon nanocones with 300 ⁰ angle for	56
(a) $C_{23}H_5$, (b) $C_{34}H_6$, (c) $C_{58}H_8$ and (d) $C_{90}H_{10}$.	
Figure 4.6: The obtained HOMOs and LUMOs of carbon	62
nanocones with disclination angle 60^{0} for (a) $C_{45}H_{15}$, (b)	
$C_{80}H_{20}$, (c) $C_{115}H_{25}$ and (d) $C_{170}H_{30}$	
Figure 4.7: The obtained HOMOs and LUMOs of carbon	63
nanocones with disclination angle 120^{0} for (a) $C_{36}H_{12}$, (b)	
$C_{56}H_{16}$, (c) $C_{99}H_{20}$ and (d) $C_{136}H_{24}$.	

List of Figures

Figure 4.8: The obtained HOMOs and LUMOs of carbon	65
nanocones with disclination angle 180^{0} for (a) $C_{48}H_{12}$, (b)	
$C_{75}H_{15}$, (c) $C_{102}H_{18}$ and (d) $C_{141}H_{21}$.	
Figure 4.9: The obtained HOMOs and LUMOs of carbon	66
nanocones with disclination angle 240^{0} for (a) $C_{28}H_{8}$, (b)	
$C_{46}H_{10}$, (c) $C_{68}H_{12}$ and (d) $C_{94}H_{14}$.	
Figure 4.10: The obtained HOMOs and LUMOs of carbon	67
nanocones with disclination angle 300^{0} for (a) $C_{23}H_{5}$, (b)	
$C_{34}H_6$, (c) $C_{58}H_8$ and (d) $C_{90}H_{10}$.	
Figure 4.11: The calculated total density of states for CNCs	68
with disclination angle 120^{0} for (a) $C_{36}H_{12}$, (b) $C_{56}H_{16}$, (c)	
$C_{92}H_{20}$ and (d) $C_{136}H_{24}$.	
Figure 4.12: The calculated total density of states for CNCs	69
with disclination angle 120^{0} for (a) $C_{36}H_{12}$, (b) $C_{56}H_{16}$, (c)	
$C_{92}H_{20}$ and (d) $C_{136}H_{24}$.	
Figure 4.13: The calculated total density of states for CNCs	70
with disclination angle 180^{0} for (a) $C_{48}H_{12}$, (b) $C_{75}H_{15}$, (c)	
$C_{102}H_{18}$ and (d) $C_{141}H_{21}$.	
Figure 4.14: The calculated total density of states for CNCs	71
with disclination angle 240^{0} for (a) $C_{28}H_{8}$, (b) $C_{46}H_{10}$, (c)	
$C_{68}H_{12}$ and (d) $C_{94}H_{14}$.	
Figure 4.15: The calculated total density of states for CNCs	72
with disclination angle 300^0 for (a) $C_{23}H_5$, (b) $C_{34}H_6$, (c) $C_{58}H_8$	
and (d) $C_{90}H_{10}$.	
Figure (5.1): Structures of boron nitride nanocones with 60°	77
angle for M1 (a) $B_{21}N_{24}H_{15}$, (b) $B_{38}N_{42}H_{20}$, (c) $B_{56}N_{42}H_{25}$ and	
(d) $B_{83}N_{87}H_{30}$.	
Figure (5.2) : Structures of Boron Nitride Nanocones with 60°	
angle for M2 (a) $B_{24}N_{21}H_{15}$, (b) $B_{42}N_{38}H_{20}$, (c) $B_{42}N_{56}H_{25}$ and	78
(d) $B_{87}N_{83}H_{30}$.	
Figure (5.3): : Structures of boron nitride nanocones with 120°	79
angle for structures (a) $B_{18}N_{18}H_{12}$, (b) $B_{28}N_{28}H_{16}$, (c) $B_{46}N_{46}H_{20}$	
and (d) $B_{68}N_{68}H_{24}$.	