Assessment of Cognitive Functions and Some Markers of Synaptic Plasticity in Diabetic Rats

Thesis

Submitted in Partial Fulfillment of M.D. Degree in Physiology

Presented By Shaimaa Nasr Amin

Assistant Lecturer of Physiology Faculty of Medicine Cairo University

Supervised By Prof. Dr. Ibrahim Mohammady Ibrahim

Professor of Physiology Faculty of Medicine Cairo University

Assistant Prof. Dr. Sandra Mourad Younan

Assistant Professor of Physiology
Faculty of Medicine
Cairo University

(الحمد لله الذي هدانا لهذا و ما كنا لنهتدی لولا ان هدانا الله)

Acknowledgement

First and foremost thanks to **ALLAH**

I would like to express my sincere appreciation and gratitude to *Prof. Or.*IbrahimMohammady Ibrahim, Professor of Physiology and former head of Physiology department Faculty of Medicine, Cairo University, for his kind supervision and productive guidance. No words can describe his grace and how I am grateful for his unlimited support.

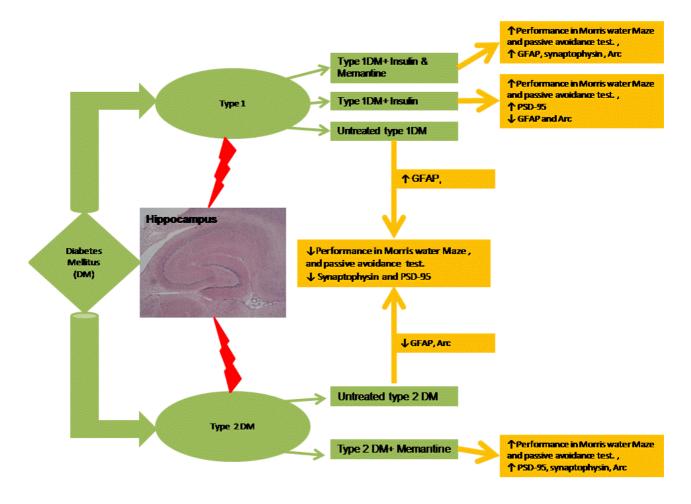
I am greatly thankful to *Or.* **Sandra Mourad Younan** Assistant Professor of Physiology, Faculty of Medicine, Cairo University, for her valuable instructions, saving no effort or time to read every word in this work.

I would like to express my deepest thanks and appreciation to *Or.* **Mira Farouk Yousef**, Assistant Professor of Histology, Faculty of Medicine, Cairo University, who offered great help and effort in this work.

Special thanks to *Or.* Laila Ahmed Rashed, Professor of Biochemistry, Faculty of Medicine, Cairo University for her participation in this study.

Shaimaa Nasr Amin

Dedicated to: My Parents


Abstract

Cognitive dysfunction is a common complication of diabetes mellitus however, less addressed and recognized. This study aimed to investigate the effect of type 1 and 2 diabetes on cognitive functions and related markers of hippocampal synaptic plasticity and the possible impact of blocking N-methyl-d-aspartate (NMDA) receptors by memantine. Seven rat groups were included in this study: non-diabetic, non-diabeticmemantine, type 1 diabetic groups: Untreated, treated with insulin alone and treated with insulin and memantine and type 2 diabetic groups: untreated and memantine treated. Cognitive functions were assessed by **Morris** Water Maze and passive avoidance immunohistochemistry was used for detection of hippocampus pre and post-synaptic markers: synaptophysin and postsynaptic density protein-95(PSD-95) respectively, learning and memory plasticity marker: activity regulated cytoskeletal associated protein (Arc) and the astrocytes reactivity marker: glial fibrillary acidic protein (GFAP). Both type 1 and 2 untreated diabetic groups showed significantly impaired cognitive performance with concomitant decrease in synaptophysin and PSD-95 compared to the non-diabetic group. In addition type 2 group showed a significant decrease in hippocampus GFAP and Arc compared to the nondiabetic group. Treating type 1 diabetic group with insulin alone significantly improved cognitive performance and PSD-95 significantly decreased GFAP and Arc compared to untreated type 1 group. Blocking NMDA receptors by memantine (30 mg/kg/day) for 3 weeks significantly increased cognitive performance, synaptophysin, GFAP and Arc in type 1 insulin-memantine group compared to type 1insulin group and significantly increased synaptophysin, PSD-95 and Arc in type 2-memantine group compared to untreated type 2 diabetic group. In conclusion, cognitive functions are impaired in both types of diabetes mellitus and can be improved by blockage of NMDA receptors which may spark future therapeutic role of these receptors in diabetes-associated cognitive dysfunction.

Key words:

Diabetes, cognitive functions, glial fibrillary acidic Protein, synaptophysin, postsynaptic density protein-95, activity regulated cytoskeletal associated protein.

Graphical abstract

DM=Diabetes mellitus; **GFAP**=Glial Fibrillary Acidic Protein; **PSD-95**=Post Synaptic Density Protien-95; **Arc**=Activity Regulated Cytoskeletal Associated Protein.

Contents

Subject	Page
Introduction and Aim of the work	1
Review of literature	
• Chapter 1: Diabetes Mellitus	3
• Chapter 2: Synaptic Plasticity	12
• Chapter 3:Cognitive Functions	38
• Chapter 4:Brain and Insulin receptor Signalling	47
• Chapter 5:Cognitive Functions in Diabetes Mellitus	53
Materials and Methods	69
Results	89
Discussion	152
Summary and Conclusion	172
Recommendations	176
References	177
Arabic Summary	

List of Figures

Figures of Review of literature

Fig.	Title	Page
1	Proposed autoimmune mechanism of the development of type 1 diabetes	4
2	Complex Pathogenesis of Type 2 Diabetes	6
3	Electron micrograph of chemical synapse	13
4	Model for the induction of long-term potentiation	17
5	CaMKIIα autophosphorylation acts as a scaffold to promote proteasome	18
	recruitment	
6	Silent synapse hypothesis	20
7	Model for signalling cascades responsible for LTD and LTP	22
8	Structural changes following triggering of LTP	24
9	Scheme of NMDA receptor showing site of action of memantine on the	25
	channel pore	
10	Sequence of events in Arc-dependent LTP consolidation	32
11	Schematic representations that summarize triggers and molecular	36
	regulators of reactive astrogliosis	
12	Cross-talking between glutamate and TGF-β1 signalling pathways	37
13	Typical divisions within long term memory	39
14	A summary of the connectivity between prefrontal cortex and other	41
	brain regions	
15	Mechanisms that affect network connectivity in PFC	43
16	The hippocampus and its connections	44
17	Insulin receptor structure and signalling	48
18	Induction of long-term depression by insulin at the Schaffer collateral	50
19	Insulin-induced increase in PSD-95 protein expression	51
20	Summary of possible mechanistic contributors to cognitive dysfunction	56
	seen in diabetes mellitus	
21	The polyol pathway	57
22	Possible pathways leading to CNS dysfunction in diabetes	66

Figures of Materials and Methods

Fig.	Title	Page
1	Passive avoidance apparatus	71
2	Diagrammatic illustration of the Morris Water Maze (MWM) testing	73
	room and apparatus	
3	Running ANY-maze™ Video Tracking System	75
4	Standard curve of insulin	79
5	Extracted rat brain after decapitation for fixation in 10% formalin	80
6	Solutions used during eosin staining	81
7	Illustration to summarize the study design	88