Pattern Of Symptomatic Primary Osteoarthritis In Elderly: A Hospital Based Study.

Thesis

Submitted in partial fulfillment of M. D. degree in Geriatrics

By
Nermien Naim Adly Mikhaeel
M.B.Bch , MSc Geriatrics

Supervised by

Prof. Dr. Mohamed Hassan El-Banouby

Professor of Neuropsychiatry and Geriatrics Ain Shams University

Prof. Dr. Mohamed Gamal El Din Zaki

Professor of Physical Medicine, Rheumatology and Rehabilitation Ain Shams University

Dr. Sarah Ahmed Hamza

Lecturer of Geriatrics Ain Shams University

Faculty of Medicine Ain Shams University 2008

دراسة أنماط خشونة المفاصل الأولية التى تسبب أعراض بين المرضى المسنيين: دراسة من داخل المستشفى

رسالة توطئه للحصول على درجه الدكتوراه في طبو صحه المسنين

مقدمه من الطبيبه/ نرمين نعيم عدلى ميخائيل بكالوريوس الطب و الجراحه

تحت إشراف الأستاذ الدكتور/ محمد حسن البانوبي أستاذ الأمراض العصبيه و النفسيه و طب المسنين كليه الطب- جامعه عين شمس

الأستاذ الدكتور/ محمد جمال الدين زكى أستاذ الطب الطبيعي و الروماتيزم و التأهيل كليه الطب جامعه عين شمس

الدكتوره/ ساره أحمد حمزه مدرس بقسم طب المسنين كليه الطب- جامعه عين شمس

> كليه الطب جامعه عين شمس 2008

Acknowledgement

I wish to express my deepest gratitude to Prof. Dr. Mohamed Hassan El-Banouby Professor of Neuropsychiatry and Geriatrics, Ain Shams University for his guidance, scientific supervision, stimulating suggestions and great support. He generously devoted much of his time and effort in helping me through out the whole work.

I wish to express my deep thanks to Prof. Dr. Mohamed Gamal Zaki Professor Of Physical Medicine, Rheumatology, And Rehabilitation, Ain Shams University

for his scientific supervision, stimulating suggestions, continuous encouragement and great support through out this thesis.

I would like also to express my deep thanks to **Dr. Sarah Ahmed Hamza Lecturer of Geriatrics, Ain Shams University** for her guidance, scientific supervision and continuous great support through out this work. I would like also to express my thanks to my senior stuff and my colleagues at Geriatric department for their help and support.

Nermien Naim Adly

Contents

subject	page
Introduction	1
Aim of the study	4
Review of literature	
Chapter 1:Epidemiology of osteoarthritis	5
Chapter 2:Pathogenesis and pathology	36
Chapter 3:Methods of assessment of OA	52
Chapter 4:Treatment of OA	80
Patients and Methods	106
Results	139
Discussion	181
English summary	213
Conclusion	216
Recommendations	217
References	218
Appendix	288
Arabic summary	1

List of Abbreviations

ACR : American College of Rheumatology

AAOS : American Academy of orthopedic Surgeons

ADL : Activities of Daily Living

AG : articular gelling

ATP : Adenosine-5'-triphosphate

BMD : bone mineral density

BMI : body mass index

CGRP : calcitonin gene-releated peptide

CM : clinical manifestations

CMC : carpometacarpal

COMP : Cartilage oligomeric protein

COX : Coxibs

CPPD : calcium pyrophosphate dihydrate

CRP : C-reactive protein

CT : computed axial tomography

CX : cervical

DIP : distal interphalangeal

DMOADs: Disease-Modifying Osteoarthritic Drugs

DSM-IV- : Diagnostics and Statistical Manual of Mental TR Disorders, fourth edition, "text revision"

Du : duration

ECM : extracelluar matrix
EOA : Erosive osteoarthritis

ESR : erythrocyte sedimentation rate

FAQ : functional assessment questionnaire

FJ : facet joints

G : grades of muscle power

GAD : Generalized Anxiety Disorder

GDS : Geriatric depression scale

HA : hyaluronic acid

IGF-1 : insulin like growth factor -1

IL : interleukin

JSN : Joint space narrowing

KL : Kellgren and Lawrence

LSOA : Lumbosacral osteoarthritis

MCP : metacarpophalangeal

MMPs : matrix metalloproteinases

MMSE : Minimental status examination

MMT : manual muscle testing

MRI : magnetic resonance imaging

MTP : metatarso-phalangeal

NADH : Nicotinamide adenine dinucleotide

NSAIDs : nonsteroidal antiinflammatory drugs

OA : Osteoarthritis

PIP : proximal interphalangeal

PPT : Physical performance test

QWB : quality of wellbeing

RF : Rheumatoid factor

ROM : range of motion

SF OA : synovial fluid signs of OA

SHAQ-DI : Stanford Health Assessment Questionnaire-

Disability index

SPECT : single photon emission scanning

SvPa : Pain severity and frequency

TENS : Transcutaneous electrical nerve stimulation

TGF- $\beta \square$: transforming growth factor- $\beta \square$

Th : thumb

TIMP : tissue inhibitors MMPs

TN: talonavicular

TNF- α : tumor necrosis factor- α

TP : timing of pain

TS Trapezio-scaphoid

VASGHS: Visual analogue scale for global health status

VASP : Visual analogue scale for pain

List of Tables

Table No	No Title		
Table (1)	Radiographic- pathological correlations in OA	51	
Table (2)	The ACR Clinical Criteria for the Classification	58	
	and Reporting of Hip OA, Tree Format		
Table (3)	Criteria for Classification of Idiopathic OA of	61	
	the Knee		
Table (4)	Cartilage Imaging in Osteoarthritis Imaging	63	
	Method Evaluation		
Table (5)	Markers of OA according to their origin:	77	
Table (6)	Physical measures in the management of		
	osteoarthritis		
Table (7)	Definition of standard of COMP	131 139	
Table (8)	Reporting of joint distribution:		
Table (9)	Reporting of joint distribution in both genders:	140	
Table(10)	Reporting of risk factors	141	
Table (11)	Reporting of occupational risk factors	142	
Table(12)	Reporting of risk factors in both genders	143	
Table(13)	Reporting of occupational risk factors in both	144	
	genders		
Table(14)	Correlation between carrying heavy objects and	145	
	site-specific OA7		
Table (15)	Correlation between uncomfortable positions	146	
	and corresponding site-specific OA		
Table(16)	Correlation between repeated movements and 147		
T 11 (4 T)	corresponding site-specific OA		
Table(17)	Correlation between working at a pace set by a 148		
TD 11 (10)	machine and site-specific OA		
Table (18)	Correlation between smoking and site-specific 149		
T-1-1- (10)	OA in males:	150	
Table (19)	Correlation between age and site-specific OA	150	
Table (20)	Correlation between body mass index (BMI) and	151	
Table (21)	site-specific OA	150	
Table (21)	Test- retest reliability of clinical manifestations	152	
Table (22)	(CM) Test retest reliability of proposed functional	153	
Table (22)	Test-retest reliability of proposed functional assessment questionnaire (FAQ):	133	
Table (23)	Test- retest reliability of radiology:	154	
Table(24)	Internal consistency of proposed clinical	155	
1 abic(2 4)	assessment		
Table(25)	Internal consistency of proposed radiology 156		
Table(26)	Validity of Arabic SHAQ-DI in OA:	157	
Table (27)	Validity of proposed clinical assessment	158	
Table (28)	Validity of proposed clinical assessment after	160	
- 	i mining of proposed elilient assessificity after	100	

	adjustment for gender		
Table (29)	Validity of mnemonic anxiety screening	162	
	questionnaire versus DSM-IV criteria of GAD		
Table (30)	Validity of proposed radiology:	163	
Table (31)	Validity of proposed radiology after adjustment	164	
	for gender		
Table (32)	Validity of JSN item of the proposed radiology	166	
Table (33)	Validity of proposed functional assessment questionnaire (FAQ):		
Table (34)	Validity of proposed functional assessment	169	
T. 11 (25)	questionnaire (FAQ) after adjustment for gender	170	
Table (35)	Compare traditional (VASP, VASGHS, ADL,	170	
	SHAQ-DI, articular index, dynamometer) versus proposed clinical assessment for correlation with		
	functional disability (assessed by PPT):		
Table (36)	Correlation between COMP versus sum of KL	172	
1 able (30)	scale, sum of proposed radiological method,		
	sum of joint space narrowing in both genders:		
Table (37)	Correlation between COMP versus traditional	173	
	and proposed methods of assessment		
Table (20)	* *		
Table (38)	The predicted equation: Percentiles of total scores of 7- items PPT:	176	
Table (39)			
Table (40)	Correlation between severity of pain versus Proposed radiology of corresponding joints.	178	
Table (41)	Correlation between severity of pain versus	179	
	Proposed radiology of corresponding joints in	177	
	both genders		
Table (42)	Correlation between all proposed clinical items	180	
, ,	for each joint versus Proposed radiology of		
	corresponding joints.		

List of Figures

Figure No	Figure Title	Page
Figure (1)	Sensitivity, and specificity of lowest 25 percentile of PPT:	177

List of Appendices

Title	Page
Master Sheet	288
Appendix 1	293
Appendix 2	294
Appendix 3	295
Appendix 4	296
Appendix 5	398
Appendix 6	300
Appendix 7	309
Appendix 8	311
Appendix 9	313
Appendix 10	315
Appendix 11	316
Appendix 12	318
Appendix 13	319
Appendix 14	320
Appendix 15	322

Pattern of symptomatic primary osteoarthritis in elderly: a hospital based study.

Thesis

Submitted in partial fulfillment of M. D. degree in Geriatrics

by

Nermien Naim Adly Mikhaeel M.B.B.ch., M.Sc. Geriatrics

Supervised by

Prof. Dr. Mohamed Hassan El-Banouby

Professor of Neuropsychiatry and Geriatrics Ain Shams University

Prof. Dr. Mohamed Gamal El-Din Zaki

Professor of Physical Medicine, Rheumatology and Rehabilitation Ain Shams University

Dr. Sarah Ahmed Hamza

Lecturer of Geriatrics Ain Shams University

Faculty of Medicine Ain Shams University 2006

Introduction

Osteoarthritis (OA)is the most common form of arthritis(Carmona et al., 2001)(Watson, 1997), and the World Health organization estimates that globally 25% of adults aged over 65 years suffer from pain and disability associated with this disease (WHO, 2003). Almost every age group is affected by OA,but prevalence increases dramatically after age 50 years in men and 40 years in women (Meulenbelt et al., 1997). Estimations suggest that 40 million Americans of all ages are affected by osteoarthritis and that 70 to 90 percent of Americans older than affected 75 years are by osteoarthritis(Hinton et al., 2002). O.A. is a debilitating condition characterized by pain ,joint inflammation and joint stiffness, and results in a substantial degree of physical disability(Guccione et al., 1994). Osteoarthritis was ranked equally with heart disease ,congestive heart failure and chronic obstructive pulmonary disease as a cause of physical disability (Guccione et al., 1994).

It is widely known that many people in the general population have radiological evidence of osteoarthritis, but remain asymptomatic (Lawrence et al., 1966), and the inclusion of asymptomatic radiographic as clinical disease entity is controversial (Hart et al., 1991).

On the other hand, Bierman-Zeinstra et al., recommended that future follow up studies should investigate to what extent the presence of one or more of the specific symptoms / signs in combination with the absence of radiological osteoarthritis predict future radiological osteoarthritis(Bierman-Zeinstra et al.,2002).

Previous epidemiological studies have largely targeted radiographic OA, and most of them have concentrated on knee and hip joints (Felson,1988)(Yazici et al., 1975) (Gunther et al. 1998). While symptomatic OA should be a focus of studies because it causes disability and has formidable societal and public health impact, few studies have been conducted to study symptomatic OA, especially hand OA, among the elderly(Niu et al., 2003).

Hand osteoarthritis is important both as a cause of pain and minor disability and because it often indicates a systemic tendency to osteoarthritis which may involve the weight bearing joints, notably the hip and knee (Hochberg, 1991).

Hip osteoarthritis, along with osteoarthritis of the knee, affects the ability to walk and climb stairs more than any other disease(American Academy of Orthopaedic Surgeons, 2004).

There is traditional methods for assessment of osteoarthritis that have been used for many year as: Articular index of Doyle et al. for osteoarthritis (Doyle et al.,1981), American college of Rheumatology criteria for classification and diagnosis of knee, hip and hand idiopathic osteoarthritis (Altman et al., 1986) (Altman et al., 1991) (Altman et al., 1990), traditional Kellgren & Lawrence grading (Kellgren & Lawrence, 1957) and Stanford Health Assessment Questionnaire (Fries et al.,1980).

The traditional methods are evaluated in several researches and there are several proposed methods were suggested to be performed in addition to the traditional methods for evaluation of osteoarthritis.