Prebiotics for Feeding of Preterm Infants

Thesis submitted in partial fulfillment for the Master

Degree in Paediatrics

By

Noha Musa Azab

M.B., B.Ch.

Supervisors

Prof. Ayman El Badawy

Professor of Pediatrics and Neonatology
Faculty of Medicine
Cairo University

Ass. Prof. Hanna Aboulghar

Ass. Prof. of Pediatrics and Neonatology
Faculty of Medicine
Cairo university

Ass. Prof. Heba Abou Hussein

Ass. Prof. of Pediatrics and Neonatology
Faculty of Medicine
Cairo University

Faculty of Medicine
Cairo University
2009

ACKNOWLEDGEMENT

First of all, thanks to **God** for his grace and mercy, and for giving me the effort to complete this work.

It was an honor to work under the supervision of eminent professors, who I appreciate their whole hearted support and immense facilities. To them, I owe more than I can record.

I was fortunate enough to carry out this work under the supervision of Prof. **Dr. Ayman El-Badawy**, Professor of Pediatrics and Neonatology, Cairo University. Thanks for his generous help and advice. It was a great honour to work with a great professor like him.

I would like to express my gratitude and thanks to Ass. Prof. **Dr. Hanna Aboulghar**, Assisstant Professor of Pediatrics and Neonatology, Cairo University for her support and guidance through this work.

Words will never be able to express my deepest gratitude and appreciation to Ass. Prof. **Dr. Heba Abou Hussein**, Assisstant Professor of Pediatrics and Neonatology, Cairo University for her kindness, great patience, continuous support and unlimited help throughout the work.

I would like to thank **Dr. Magdy Ibrahim**, Professor of Gynaecology and Obstetrics, Cairo University who did the statistical analysis of this study with much patience, faithfulness, and devotion.

Special thanks go to all my colleagues in the paediatric medicine department, for their co-operation especially **Dr. Safaa Mohammed**, Ass. Lecturer of Paediatrics, Cairo University who offered me persistant help and advice.

Last, but not least I would like to thank my family, namely my dear father and my beloved brothers and sisters for supporting me throughout my life.

ABSTRACT

BACKGROUND The intestinal flora of breast-fed infants is generally dominated by bifidobacteria which have beneficial properties. Their presence is due to various components of breast milk, including prebiotic substances .These prebiotics have been added to artificial milk formulae so as to mimic breast milk in its action on intestinal flora.

METHODS We here report 100 healthy preterms born in our hospital and were admitted to our NICU over a period of 7 months. They were divided into two groups (50 preterms each). Preterms in group 1 were given milk formula enriched wth prebiotics (Bebelac EC containing GOS), while preterms in group 2 were given premature formula not enriched with prebiotics. Preterms in both groups were then compared regarding their growth rate, frequency of stools, development of feeding intolerance, electrolyte disturbance and the development of sepsis during their NICU stay.

RESULTS Significant improvement in average daily weight gain and stool frequency in preterms receiving prebiotics observed during their stay (p< 0.05). Significantly less incidence of feeding intolerance was observed in prebiotics receiving preterms (p < 0.05). Sepsis screening through CRP and CBC shift showed significant less incidence of sepsis in preterms receiving prebiotics (p < 0.05). No disturbance in serum electrolytes was noted in either groups.

CONCLUSIONS Prebiotics have beneficial effects in feeding preterm infants.

Key words: Gut microflora, preterms, necrotising enterocolitis, prebiotics.

Contents

List of tablesi List of figuresii	i
List of abbreviationsiv	7
Introduction	
Chapter One: Gastrointestinal Tract as an Ecosystem	
EMBRYOLOGY OF THE INTESTINAL TRACT	4
ONTOGENY OF THE HUMAN DIGESTIVE SYSTEM	5
DIGESTION AND ABSORPTION	
MOTILITY	7
THE GASTROINTESTINAL BARRIER	
The intestinal barrier	8
• Intestinal barrier function	
Mucosal injury and repair	14
THE GUT FLORA	
Normal microflora	16
• Development of microflora1	7
Metabolic activity of microflora	
• Gut barrier effect	20
Altering gut flora	
Chapter Two: Vascular Supply of the Gastrointestinal Tract	
EMBRYOLOGY OF THE INTESTINAL CIRCULATION	
ANATOMY OF THE INTESTINAL CIRCULATION	22
REGULATION OF INTESTINAL BLOOD FLOW	
• Role of ET-1 in regulation of intestinal vascular resistance	24
• Role of NO in regulation of intestinal vascular resistance	25
Chapter Three: Feeding of Preterm Newborn	
FEEDING READINESS	
LIMITATIONS TO FEEDING	
WHAT TO FEED	
ROUTE OF FEEDING.	
RATE OF FEEDING	
- YV LIDIN AINIJ AUVY IVIUCA TO FEED	.).

THE PHARMACOLOGICAL MILIEU	
Antenatal steroids	34
• Indomethacin	35
Theophylline and Caffeine	35
• Prokinetics	
MONITORING FEEDING TOLERANCE	
MONITORING ADEQUACY OF ENTERAL FEEDING	36
Chapter Four: Necrotizing Enterocolitis (NEC)	
DEFINITION	
EPIDEMIOLOGY	38
PATHOPHYSIOLOGY	
• Immature intestinal motility and digestion	
Immature intestinal circulatory regulation	
Immature intestinal barrier function	
Abnormal bacterial colonization	
Immature intestinal innate immunity	
Genetic predisposition	
Feeding and NEC	
PATHOLOGY OF NEC.	
DIAGNOSIS OF NEC.	
TREATMENT OF NEC.	
COMPLICATIONS OF NEC	63
PREVENTION OF NEC	- - -
Human milk feeds and feeding strategies	
Amino acid supplementation	
• Immunoglobulins	
Epidermal growth factor	
• Erythropoietin	
Glucocorticoids	
Oral antibiotics	
• Probiotics, Prebiotics, and Postbiotics	68
Chapter Five: Prebiotics	60
DEFINITIONS	
CRITERIA OF PREBIOTICS	/0
HEALTH-RELATED ASPECTS AND APPLICATIONS	72
Protection against colon cancer	
• Effects on pathogens	
• Improved calcium absorption	
Effects on blood lipids	75

Immunological effects	76
• Toxin elimination	76
Prebiotics in allergy	76
Prebiotics in hyperbilirubinemia	78
Prebiotics and IBD	78
MEDICAL USES OF PREBIOTICS	
	79
Treatment of hepatic encephalopathy	79
Chapter Six: Prebiotics in Feeding Preterm Newborn	
PREBIOTICS AND THE GIT	
• Effects in the upper GIT	80
• Effects in the colon	
PREBIOTICS FOR FEEDING OF PRETERMS	81
PREBIOTICS AND GUT MICROFLORA	83
FUNCTIONAL EFFECTS OF PROBIOTICS AND PREBIOTICS	84
EFFECTS OF PREBIOTICS ON INTESTINAL MICRORLORA	85
Chapter Seven: Recent Advances with Prebiotics	
NOVEL PREBIOTICS	87
FUNCTIONALLY ENHANCED PREBIOTICS	
Targeted prebiotics	88
• Persistent prebiotics	90
Anti-adhesive oligosaccharides	
Patients and Methods	91
Results	93
Discussion	106
Summary and Conclusions	115
Recommendations	119
References	20

List of Tables

No.	Table	Page
Table (1)	Principal functions of GIT.	5
Table (2)	The gastrointestinal barrier.	8
Table (3)	Monitoring enterally fed infants.	37
Table (4)	Risk factors for necrotizing enterocolitis.	39
Table (5)	Micro-organisms associated with NEC.	44
Table (6)	Modified Bell staging criteria for NEC.	56
Table (7)	Supportive care for the infant with NEC.	59
Table (8)	Potential preventive strategies of NEC.	65
Table (9)	Features of milk components proposed as prebiotics.	82
Table (10)	Demographic features of preterms in the studied groups.	93
Table (11)	Classification of preterms according to their gestational age in	94
	both studied groups.	
Table (12)	Variation in mode of delivery in both studied groups.	95
Table (13)	Comparison between birth weight of preterms in both studied	96
	groups.	
Table (14)	Average daily weight gain in both studied groups.	98
Table (15)	Average daily stool frequency in both studied groups.	100
Table (16)	Incidence of development of feeding intolerance in both	101
	studied groups.	
Table (17)	Serum electrolytes follow up in both studied groups.	104
Table (18)	Sepsis screening in preterms of both studied groups.	105

List of Figures

No.	Figure	Page
Fig. (1)	Time of first appearance, rate of development and age at	6
	which childhood levels of pancreatic proteases are achieved.	
Fig. (2)	The intestinal immune system.	13
Fig. (3)	Exogenous and endogenous factors involved in the injury and	15
	repair of the gastrointestinal mucosa.	
Fig. (4)	Major determinants of intestinal microflora composition.	19
Fig. (5)	Schematic representation of the intestinal microcirculation.	22
Fig. (6)	Characterization of the dynamic balance between Nitric	27
	oxide and Endothelin-1 in determining intestinal vascular	
	resistance in the newborn.	
Fig. (7)	Pathophysiology of NEC	40
Fig. (8)	Immature intestinal barrier function	43
Fig. (9)	Abnormal bacterial colonization	45
Fig. (10)	Immature innate intestinal immunity	46
Fig. (11)	Possible genetic predisposition.	48
Fig. (12)	Patchy necrotic, paper-thin distended intestine in necrotizing	52
	enterocolitis.	
Fig. (13)	An excised length of necrotic intestine.	52
Fig. (14)	Acute necrotizing enterocolitis with haemorrhagic necrosis of	53
	the mucosa.	
Fig. (15)	Microscopic picture of NEC.	54
Fig. (16)	Plain radiograph of the abdomen of an infant with NEC.	57
Fig. (17)	Pneumatosis intestinalis and intestinal perforation.	58
Fig. (18)	Pneumatosis intestinalis. (lateral view)	58
Fig. (19)	Abdominal U/S in NEC.	63
Fig. (20)	Criteria for classification of food supplement as prebiotic.	70
Fig. (21)	Schaematic presentation of the prebiotic concept.	72
Fig. (22)	Schematic showing the possible mechanisms of prebiotics.	77
Fig. (23)	Dichotomy of microflora based on potentially toxic or	86
	beneficial properties.	
Fig. (24)	Biotechnological manufacture of enhanced prebiotics. EPS,	89
	extracellular polysaccharide.	
Fig. (25)	Gestational age variation in both studied groups.	94
Fig. (26)	Sex variation in both studied groups.	95
Fig. (27)	Mode of delivery in both studied groups.	96
Fig. (28)	Birth weight of preterms in group 1.	97

Fig. (29)	Birth weight of preterms in group 2.	97
Fig. (30)	Birth weight of preterms in both studied groups.	98
Fig. (31)	Average daily weight gain in both studied groups.	99
Fig. (32)	Comparison between average daily weight gain in both studied groups.	99
Fig. (33)	Average daily stool frequency in both studied groups.	100
Fig. (34)	Feeding intolerance in preterms of both studied groups.	101
Fig. (35)	Different incidence of feeding intolerance in both studied groups.	102
Fig. (36)	Different forms of feeding intolerance in preterms of both studied groups.	103
Fig. (37)	Serum electrolytes disturbance in both studied groups.	104
Fig. (38)	Comparison between sepsis screening in preterms of both studied groups.	105

List of Abbreviations

ALP	Alkaline phosphatase
BiPAP	Bilevel positive airway pressure
BUN	Blood urea nitrogen
CFU	Colony forming unit
CPAP	Continous positive airway pressure
CSF	Cerebrospinal fluid
DGGE	Density gradient gel electrophoresis
ECG	Electrocardiogram
EGF	Epidermal growth factor
ELBW	Extremely low birth weight
eNOS	Endothelial isoform of nitric oxide synthetase
Epo	Erythropoietin
ET-1	Endothelin- 1
ETA	Endothelin A
ETB	Endothelin B
FGF-2	Fibroblast growth factor – 2
FOS	Fructooligosaccharides
GALT	Gut assoiated lymphoid tissue
GI	Gastrointestinal
GOS	Galactooligosaccharides
HCL	Hydrochloric acid
IBD	Inflammatory bowel disease
IgA	Immunoglobulin A
IL	Interleukin
INR	International normalization ratio
LBW	Low birth weight
LDL	Low density lipoproteins
MAMPs	Microbial associated molecular patterns
MMC	Migrating motor complexes
NDOs	Non-digestible oligosaccharides
NEC	Necrotising enterocolitis
NICU	Neonatal intensive care unit
NO	Nitric oxide
NPO	Nothing by mouth
NSP	Nonstarch polysaccharides
PAF	Platelet activating factor
PAF-AH	Platelet activating factor-acetyl hydroxylase
PDGF	Platelet-derived growth factor

PGE2	Prostaglandin E2
PRN	As needed
PRR	Pattern recognition receptor
PTT	Partial thromboplastin time
RS	Resistant starch
SCFA	Short chain fatty acid
SNPs	Single nucleotide polymorphisms
TGF-β	Transforming growth factor-β
TLR-4	Toll- like receptor 4
TNF-α	Tumour necrosis factor – α
TPN	Total parenteral nutrition
UC	Ulcerative colitis
VEGF	Vascular endothelial growth factor
VLBW	Very low birth weight

Interoduction

Introduction

The fully developed gastrointestinal system posses local nonspecific barrier defences and cell-specific antigen interactions that function together to protect the gut from colonization and translocation of potentially pathogenic bacteria and antigens. (*Walker*, 2002)

The local defenses include gastric acidity and digestive enzymes to destroy ingested pathogens and associated antigens, mucus production to inhibit microbial adherence, active regular peristalsis to prevent bacterial stasis and rapidly eliminates antigen-antibody complexes, and secretory IgA to bind luminal antigens impending antigen interaction with the intestinal epithelial cell thus reducing antigen penetration (Winkler et al., 2007)

In addition to the above mechanisms, the establishment of a stable and diverse intestinal flora with commensal organisms is essential for the initial priming and regulation of the gastrointestinal immune defenses and modulation of intestinal inflammation. (*Caplan*, 2000)

Commensal organisms enhance and maintain the integrity of the mucosal barrier by reducing mucosal permeability, increasing mucus production, strengthening intestinal tight junctions, and inhibiting bacterial translocation. This is accomplished by producing toxic substances against aerobic bacteria, reducing intraluminal pH, and competing for binding sites. (*Collins et al.*, 1999)

The preterm infant demonstrates colonization patterns distinctly different from that of a full term infant. These differences are largely explained by the developmental immaturity of intestinal epithelial glycoconjugate expression and the unique environmental exposures experienced by the preterm infant. (*Mack et al.*, 1999)

Almost all preterm low birth-weight infants in the NICU experience delayed enteral feedings, exposure to early and prolonged broad-spectrum antibiotics and are introduced to the hospital environmental flora. All of these factors contribute to the delay in intestinal colonization by commensal, non-pathogenic bacteria, to the paucity and lack of diversity of bacterial species, and to the increased risk of colonization by pathogenic bacteria. (*Fanaro et al.*, 2003)

Breast-fed babies tend to have fewer incidences of infection than their bottle-fed counterparts, possibly due to the protective components of breast milk. These components include antibodies and its 'prebiotic' effect on gut flora. (*McCartney*, 2004)

It is now possible to have commercially available non-digestible oligosaccharides and supplement formulas with these ingredients, known as prebiotics. Galactooligosaccharides (GOS) and fructooligosaccharides (FOS) have been used to stimulate Bifidobacteria, and several studies have demonstrated their prebiotic effects. (*Gibson et al.*, 1995)

Aim of the work