

Cairo University

Multi Objective Optimization for Distributed Generation Allocation in Distribution Systems

By

Mena Ragy Amen Girgis

A Thesis Submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

In

Electrical Power and Machines Engineering
FACULTY OF ENGINEERING, CAIRO UNIVERSITY

GIZA, EGYPT

2015

Multi Objective Optimization for Distributed Generation Allocation in Distribution Systems

By

Mena Ragy Amen Girgis

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science
In
Electrical Power and Machines Engineering

Under the Supervision of

Prof. Dr. Zeinab H. M. Osman

Electrical power Engineering Department Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Multi Objective Optimization for Distributed Generation Allocation in Distribution Systems

By

Mena Ragy Amen Girgis

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
In
Electrical Power and Machines Engineering

Approved by the

Examining Committee

Prof. Dr.Zeinab H. M. OsmanThesis Advisor Professor in Electrical Power and Machines Department

Prof. Dr. Hussein Attia Internal Examiner

Professor in Electrical Power and Machines Department

Prof. Dr. Ebtisam Mostafa Mohamed SaiedExternal Examiner Professor in Electrical Engineering Department Banha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

Declaration for the Master's Thesis

I hereby affirm that the master thesis at hand is my own written work and that I have used no other sources and aids others than those indicated. Only the sources cited have been used. Those parts which are direct quotes or paraphrases are identified as such.

Mena Ragy Amen

Engineer: Mena Ragy Amen

Date of Birth: 08 / 03 / 1987

Nationality: Egypt

E-mail: eng_mena_ragy@yahoo.com

Phone.: 01003783770 Address: Al Zaytoun - Cairo

Registration Date :1 / 10 / 2010 Awarding Date : / / 2015

Degree : Master of Science

Department : Electrical Power and Machines Engineering

Supervisors: Prof. Dr. Zeinab H. M. Osman

Examiners: Prof. Dr. Zeinab H. M. Osman

Prof. Dr. Hussein Attia

Prof. Dr. Ebtisam Mostafa Mohamed Saied

Title of Thesis: Multi Objective Optimization for Distributed Generation Allocation

in Distribution Systems

Key Words: Distributed Generation (DG)- Multi objective optimization- DG

Cost- Distribution system losses- Voltage Deviations.

Summary:

The main contributions of this thesis are using multi objective function to formulate DG allocation problem in Distribution System and considering economical aspects. This thesis presents a model which differentiates between different technologies of DG applications. The objectives are minimization of capital and operation cost of DG units; minimization of system peak loss; and minimization of voltage deviations with respect to nominal bus voltage. The proposed methodology can determine the optimal solution in case of only one objective function, as well as give a compromise solution according to the considered objectives. The proposed algorithm has been applied on IEEE 69- bus system. A comparative results of the given in literature studies of 69 standard distribution system demonstrate the superiority of the developed model.

Acknowledgments

Prof. Zeinab H. Osman, electrical power and machine department, Cairo University for her excellent thesis supervision and the guidance she extended. She provided me the great opportunity to work on this thesis and meticulous help regarding this research. What I am today is because of my Father, my family and friends. They have been blessing me with their unconditional support and love throughout my life. They are always there for me for everyups and downs of my life. I am grateful to all of them.

Whatever I have tried to present in this thesis would remain incomplete, unless and until I extend my heartiest thanks to all people who have spent their valuable time to help and explain to me all that I want to know; words will fall short in explaining their dedication.

Table of Contents

ACKNOWLEDGMENT	i
TABLE OF CONTENTS	ii
LIST OF TABLES	vi
LIST OF FIGURES	vii
NOMENCLATURE	х
ABSTRACT	xii
CHAPTER 1: INTRODUCTION	
1.1 Back Ground	1
1.2 Applications of Distributed Generation	2
1.3 Advantages of Distributed Generation	5
1.3.1 Reliability	5
1.3.2 LLRI: Line Loss reduction Index	6
1.3.3 VPII: Voltage Profile Improvement Index	6
1.3.4 Power Quality	7
1.3.5 Transmission Benefits/ Substitute of Power Delivery Investments	7
1.3.6 Remote areas to which the distribution system cannot reach	7
1.3.7 Areas experiencing load growth	7
1.3.8 New Large Loads	8
1.3.9 Environmental Benefits	8
1.4 DG Disadvantages	9
1.5 Thesis Objective	9
1.6 Thesis Outline	10
CHAPTER 2 : DG TECHNOLOGIES AND ECONOMICS	
2.1 Introduction	11
2.2 Different Sources	11
2.2.1 Traditional Sources	11
2.2.2 Renewable Sources	12
2.3 Thesis Studied power Source	13
2.3.1 Micro Turbines Power Plant	13
2.3.2 Solar Power Plant	13
2.3.3 Wind Power Plant	14
2.3.4 Biomass	16
2.3.5 Combined Heat and power	17
2.3.5.1 CHP Advantages	18

	2.3.5.2 Gas Turbines	18
	2.3.5.3 Reciprocating engines	18
	2.3.6 Fuel Cell	19
	2.3.7 Hydroelectric Power Plant	19
2.4	Factor Effecting DG Design	20
2.5	Effect of DG Type on Costs	21
	2.5.1 Fixed Initial Cost	21
	2.5.2 Rate of Interest	21
	2.5.3 Depreciation	22
	2.5.4 Operational cost	22
	2.5.4.1 Cost of Fuels	22
	2.5.4.2 Labor Cost	23
	2.5.4.3 Cost of maintenance and Repairs	23
	2.5.4.4 Cost of Stores	24
	2.5.4.5 Supervision	24
	2.5.4.6 Taxes	24
	Economic of Power Generation	25
2.7	Economical factors & Feed in Tariff	26
	2.7.1 Feed in Tariff	27
	2.7.2 Net present value (NPV)	27
	2.7.3 Internal Rate of Return (IRR)	28
	2.7.4 Payback period	28
	2.7.5 Sensitivity Analysis	28
	Egypt Energy Challenges	28
	Proposed Actions to improve the energy profile in Egypt	31
	Enhancing renewable Energy Utilization	32
2.11	Challenges and Renewable necessity	33
	2.11.1 Wind power in Egypt Economical Evaluation	34
	2.11.2 Solar Power in Egypt Economical Evaluation	35
CH	APTER 3 : GENETIC ALGORITHM	38
3.1	What are Genetic Algorithms?	38
3.2	Genetic Algorithms Differences	38
3.3	GAs Main Elements	39
3.4	Representation and Initialization of Population	40
3.5	The Objective and Fitness Functions	40
	Selection	41
	Crossover (Recombination)	41
	Mutation	41
	Termination of the GA	42
3.10	Data Structures	42

3.10.1 Chromosomes	42
3.10.2 Phenotypes	42
3.10.3 Objective function values	43
3.10.4 Fitness values	43
3.11 Multi objective Evolutionary Algorithm	43
3.12 NSGA-II	44
3.13 The Improved NSGA-II	47
3.14 Fuzzy Decision Making	48
CHAPTER 4: SOLUTION METHODOLGIES AND	
PROPOSED MODEL	
4.1 Introduction	50
4.2 DG Objectives	51
4.2.1 Power Losses Minimization	51
4.2.2 Voltage Profile Improvement	54
4.2.3 Investment Cost Minimization	55
4.3 DG Planning Constraints	60
4.4 DG Sizing and Placement Methodology	62
4.5 Optimization techniques and Merits	64
4.6 HOMER Tool	68
4.7 Proposed Method	69
4.7.1 Problem Formulation	69
4.7.2 Solution method	71
4.7.3 Solution Tool NGPM	74
4.8 Methodology	77
CHAPTER 5 : DEVELOPED MODEL APPLICATIONS	
ON IEEE 69-BUS SYSTEM	
5.1 Introduction	79
5.2 General Assumption	79
5.3 Basic Case	83
5.4 Scenario I: Biomass	84
5.5 Scenario II: Micro Turbine	87
5.6 Scenario II: Solar	90
5.7 Scenario IV:Wind	93
5.8 Scenario V:Hydro	96
5.9 Scenario VI:Combined Heat and Power	99
5.10 Scenario VII:Fuel Cell	102
5.11 Summary	105
5.12 Fuzzy Compromise Solution	110
5.13 Comparison with previous researches	113
CHAPTER 6: CONCLUSION AND FUTURE WORK	

6.1. Concluding Remarks	117
6.2 Contributions of the thesis	117
6.3. Main Conclusions	118
6.4 Suggestions for Future Work	118
REFRENCES	119
APPENDICIES	123
Appendix A: Data of 69-bus system and Analysis	124
Appendix B : Cost Constants Reference	129
Appendix C: Steps to Determine the Optimum New	133
Electric- Power Generating Unit	

List of Tables

Table 2.1: Electrical Production companies Capacities (2013)	32
Table 2.2: Solar Cells Efficiency Versus Cost	36
Table 5.1: Constant parameters of Studied cases	81
Table 5.2: Output Results Example	82
Table 5.3: Biomass Studied Solutions Brief	84
Table 5.4: Micro Turbine Studied Solutions Brief	87
Table 5.5: Solar Studied Solutions Brief	90
Table 5.6: Wind Studied Solutions Brief	93
Table 5.7: Hydro Studied Solutions Brief	96
Table 5.8: CHP Studied Solutions Brief	99
Table 5.9: Fuel Cell Studied Solutions Brief	102
Table 5.10: Compromise Solutions Brief	110
Table 5.11: Comparison with previous researches	113
Table C.1: Steps to Determine the Optimum New Electric-	133
Power Generating Unit	

List of Figures

Fig 1.1: Traditional Power System	1
Fig 2.1: Power Plant Classification	12
Fig 2.2: Micro Turbine 30 KW	13
Fig 2.3 : Conventional Generation versus Combined Heat and power	17
Fig 2.4: Variation of fixed cost and operation cost with investment.	26
Fig 2.5: Variation of various costs of power plant versus its capacity.	26
Fig 2.6: Egypt Fuel Consumption	29
Fig 2.7: Egypt Annual Load Growth	30
Fig 2.8: Energy Generation Development Per Year	30
Fig 2.9: Africa and Middle East solar irradiation	37
Fig 3.1: A Simple Genetic Algorithm	39
Fig 3.2: Complete NSGA-II procedure	45
Fig 3.3: Processing of populations in NSGA-II over one generation.	46
Fig 3.4: Linear type membership function.	49
Fig 4.1: Optimization problem classification	50
Fig 4.2: Power flow two bus system	51
Fig 4.3: Optimization Solution Classification	64
Fig 4.4: 10 bus system	70
Fig 4.5: PQ DG Modeling	73
Fig 4.6: PV DG Modeling	73

Fig 4.7: Proposed method Flow chart	78
Fig 5.1: IEEE 69 Bus system Network	79
Fig 5.2: Solution Example	81
Fig 5.3: Biomass Studied Solutions (Losses and Voltage)	85
Fig 5.4 : Biomass Studied Solutions (DG Size ,DG Ploss (MW) and Cost (M\$))	85
Fig 5.5 : NSGA-II Optimization Solution Output – Biomass Case	86
Fig 5.6: Biomass Solutions Voltage Profile Comparison	86
Fig 5.7: Micro Turbine Studied Solutions (Losses and Voltage)	88
Fig 5.8: Micro Turbine Studied Solutions (DG Size ,DGPloss (MW) and Cost (M\$))	88
Fig 5.9: NSGA-II Optimization Solution Output – Microturbine Case	89
Fig 5.10: Micro Turbine Solutions Voltage Profile Comparaison	89
Fig 5.11: Solar Studied Solutions (Losses and Voltage)	91
Fig 5.12: SolarStudied Solutions (DG Size ,DGPloss (MW) and Cost (M\$))	91
Fig 5.13 : NSGA-II Optimization Solution Output – Solar case	92
Fig 5.14 : Solar Solutions Voltage Profile Comparaison	92
Fig 5.15: Wind Studied Solutions (Losses and Voltage)	94
Fig 5.16: Wind Studied Solutions (DG Size ,DG Ploss (MW) and Cost (M\$))	94
Fig 5.17: NSGA-II Optimization Solution Output – Wind Case	95
Fig 5.18: Wind Solutions Voltage Profile Comparison	95
Fig 5.19: Hydro Studied Solutions (Losses and Voltage)	97
Fig 5.20: Hydro studied Solutions (DG Size ,DGPloss (MW) and Cost (M\$)	97
Fig 5.21: NSGA-II Optimization Solution Output – Hydro case	98
Fig 5.22: Hydro Solutions Voltage Profile Comparison	98

Fig 5.23: CHP Studied Solutions (Losses and Voltage)	100
Fig 5.24: CHP studied Solutions (DG Size ,DGPloss (MW) and Cost (M\$)	100
Fig 5.25: NSGA-II Optimization Solution Output – CHP case	101
Fig 5.26: CHP Solutions Voltage Profile Comparison	101
Fig 5.27: Fuel Cell Studied Solutions (Losses and Voltage)	103
Fig 5.28: Fuel Cellstudied Solutions (DG Size ,DGPloss (MW) and Cost (M\$)	103
Fig 5.29: NSGA-II Optimization Solution Output – Fuel Cell case	104
Fig 5.30: Fuel Cell Solutions Voltage Profile Comparison	104
Fig 5.31: Single DG Size Studied Cases (Cost Ascending) Summary	105
Fig 5.32: Single DG Size Studied Cases (Losses Reduction Descending) Summary	106
Fig 5.33: Single DG Size Studied Cases (Losses Ascending) Summary	106
Fig 5.34: Multi DG Studied Cases (Cost Ascending) Summary	107
Fig 5.35: All Studied Cases (Ploss Ascending) Summary	107
Fig 5.36: All Cases Cost Ascending Summary	108
Fig 5.37: All cases Descending min. Bus Voltage	109
Fig 5.38: All compromise solutions Voltage Profile Summary	111
Fig 5.39: All compromise solutions (Ploss Ascending) Summary	111
Fig 5.40: All compromise solutions Cost Ascending Summary	112
Fig A1: IEEE 69 Bus System	124
Fig A2 : IEEE 69 Bus System Voltage Profile	124
Fig C1: Screening Curve	134

Nomenclature

AC Alternating Current

AGC Automatic Generation Control

AIS Air-insulated Switchgear

CHP Combined Heat and Power

CO₂ Carbon Dioxide

DC Direct Current

DG Distributed Generation

DiSco Distribution Companies

DS Distribution System

EIRI Environment Impact Reduction Index

EMS Energy Management System

EPQ Electric Power Quality

ES Evolution Strategy

FOR Forced Outage Rate

GA Genetic Algorithm

GIS Gas-insulated Switchgear

IEC International Electro-technical Commission

IEEE The Institute of Electrical and Electronics Engineers

ISCCS Integrated Solar Combined Cycle Systems

kV Kilo Volts

kVA Kilo Volt Amper

kW Kilo Watt

LCOE Levelized Cost of Energy

LV Low voltage

LLRI Line Loss reduction Index

M Total number of lines (sections plus tie lines)

MOA Multi-objective optimization algorithm

MHD Magneto Hydro Dynamic

MW Mega Watt

NERA National Economic Research Association