A Possible Role in Immune Response Modulation after Autologus Bone Marrow Stem Cell Transplantation in Type 1 DM

Thesis

Submitted for partial fulfillment of M.D degree in **Internal Medicine**

Ву

Hanan Mahmoud Ali Mahmoud

M.B.B.Ch., and Master Degree of Internal Medicine Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Mohamed Fahmy Abd El Aziz

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Prof. Abdel Sattar El Deeb

Professor of Internal Medicine Faculty of Medicine – Ain Shams University

Prof. Alaa El Din Ismail

Professor of General Surgery Faculty of Medicine – Ain Shams University

Prof. Hala Ahmed Talkhan

Professor of Clinical Pathology Faculty of Medicine – Ain Shams University

Dr. Khaled Mahmoud Makboul

Assistant Professor of Internal Medicine Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2014

Acknowledgements

First, and foremost, my deepest gratitude and thanks should be offered to" ILLIII", the Most Kind and Most Merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to **Prof.**Mohamed Fahmy Abd El Aziz, Prof. of Internal Medicine, Faculty of Medicine – Ain Shams University, for his continuous support and guidance for me to present this work. It really has been an honor to work under his generous supervision.

I acknowledge with much gratitude to **Prof.** Abdel **Sattar El Deeb**, Prof. of Internal Medicine, Faculty of Medicine – Ain Shams University, for his great supervision and unlimited help to provide all facilities to accomplish this work.

I acknowledge with much gratitude to **Prof.** Alaa El Din Ismail, Prof. of General Surgery, Faculty of Medicine – Ain Shams University, for his great supervision, valuable advice in this work.

I would like also to thank with all appreciation **Prof. Hala Ahmed Talkhan**, Prof. of Clinical Pathology, Faculty of Medicine – Ain Shams University, for her assistance and cooperation in this work.

I can't forget to thank **Dr. Khaled Mahmoud Makboul**, Assistant Professor of Internal Medicine, Faculty of
Medicine – Ain Shams University, for his encouragement and great
help during the whole work.

Hanan Mahmoud Ali Mahmoud

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	vi
List of Figures	vii
Introduction	1
Aim of the Work	8
Review of Literature	
- Diabetes Mellitus	9
- Immune Mediated Beta Cell Destruction in Type 1 DM	33
- Stem cells	48
- Immunomodulation and HSCs Therapy in type 1 DM	85
Patients and Methods	105
Results	121
Discussion	131
Conclusion	141
Recommendation	142
Summary	143
References	146
Arabic Summary	

List of Abbreviations

AAgs : Antibodies to islet autoantigens

ACE : Angiotensin-converting enzyme

AD : Autoimmune disease

ADA : American Diabetes Association

ADSCs : Adipose tissue derived stromal cells

AGEs: Advanced glycation end products

AHSCT : Hematopoietic stem cell transplantation

ALL : Acute lymphoblastic leukemia

ALT : Alanine Amino transferase

AML : Acute myeloid leukemia

APC : Antigen-presenting cells

ARBs : Angiotensin receptor blockers

ASCs : Adult stem cells

ASCT: Autologous stem cell transplantation

ASL : Amyotrophic lateral sclerosis

AST : Aspartate Amino transferase

BM : Bone marrow

BR : Breast cancer

BW : Balance Weight

CBC : Complete blood count

CHD : Chronic heart disease

CLL : Chronic lymphocytic leukemia

CML : Chronic myeloid leukemia

CNS : Central nervous system

CRC : Colorectal cancer

CRP : C-reactive protein

CV : Cardiovascular

CVD : Cardiovascular disease

CY : Cyclophosphamide

DAG : Diacylglycerol

DCCT: Diabetes control clinical trial

DCs : Activated dendritic cells

DCs : Dendritic cells

DKA : Diabetic ketoacidosis

DLI : Donor's lymphocyte infusion

DM : Diabetes mellitus

DMARDs : Disease-modifying anti-rheumatic drugs

DMD : Duchenne muscular dystrophy

DOPA : Dopamine precursor

DPP-4 : Dipeptidyl peptidase-4 inhibitors

EBMT : European Bone Marrow Transplantation

EF : Ejection fraction

ESCs : Embryonic stem cells

FISH : Fluorescence in situ hybridization

FISH : Fluorescence in situ hybridization

FPG: Fasting plasma glucose

GAD : Glutamic acid descarboxilase

GAPDH : Glyceraldehyde 3-phosphate dehydrogenase

G-CSF : Granulocyte colony-stimulating factor

GD : Gestational Diabetes

GFAT : Glucosamine-glutamine, fructose-6-phosphate amidotransferase

GLUTs : Glucose transporters

GSH : Glutathione

GVHD : Graft-versus-host disease

GVT : Graft versus tumor

HbA1c : Haemoglobin A1C

HCL : Hydrochloric acid

HD : Huntington's disease

HDC : High dose chemotherapy

HHS : hyperosmolar hyperglycemic state

HLA : Human leukocyte antigen

HSCs : Haematopoietic stem cells

ICA : Islet cell antibody

ICM : Inner cell mass

IFG: Impaired fasting BG

IFN- γ : gamma interferon

IgG : Immunoglobin G

IHA : Immune haemolytic anemia

IL : Interleukin

ITP : Immune thrombocytopenia purpura

JIA : Juvenile idiopathic arthritis

KLAT : Keratolimbal allograft transplantation

LC : Lung cancer

LDH : Lactate dehydrogenase

LSCD: Limbal SC deficiency

MAPK : Mitogen-activated protein kinase

MF : Macrophages

MHC : Major histocompatibility complex

MI : Myocardial infarction

Mo : Monocytes

MODY : Maturity-onset diabetes of the young

MS : Multiple Sclerosis

MSC : Mesenchymal stem cells

NADPH : Nicotinamide adenine dinucleotide phosphate

NF : Nuclear factor

NOD : Non-obese diabetic

OA : Osteoarthritis

OC : Ovarian cancer

OGTT : Oral glucose tolerance test

PCR : Polymerase chain reaction

PD : Parkinson's disease

PD : Processing Disposable(s)

PDGF: Platelet-derived growth factor

PMN : Polymorphonuclear

PPMS: Primary progressive MS

RA : Rheumatoid arthritis

RAGE : Receptor for AGE

RCC: Renal cell cancer

RICT: Reduced intensity conditioning regimens

RIST : Reduced-intensity SC transplantation

ROS : Reactive oxygen species

SC : Cesarean section

SCLC: Small cell lung carcinoma

SDH : Sorbitol dehydrogenase

SF : Synovial fluid

SLE : Systemic lupus erythematosus

SPMS: Secondary progressive MS

SSc : Systemic sclerosis

T1DM : Type 1 diabetes mellitus

Th : T helper

TLRs : Toll-like receptors

TMB : Tetra methyl benzidine

TNF : Tumour necrosis factor

TNF- β : Tumor necrosis factor beta

TZDs : Thiazolidinediones

UCB : Umbilical cord blood

UCE : Umbilical cord blood

UCE : Umbilical cord epithelium

UTI : Urinary tract infection

2hPG : 2-hour plasma glucose

α : Alpha

 β : Beta

γ : Gamma

List of Tables

Table	No.	Title	Page	No.
Revie	ew of	Literature:		
Table	(1):	Recommendations for the diagnosis classification of diabetes mellitus 2013		12
Table	(2):	Criteria for testing for diabetes in asympton individual		13
Table	(3):	Gestational diabetes mellitus GDM		13
Table	(4):	Advantages and Disadvantages of Screet Tests for Diabetes	_	14

List of Tables (Cont...)

Table No.	Title	Page	No.
Results:			
Table (1):	Descriptive data of studied subjects as rage, weight, BMI, systolic and diastolic pressure, duration of type 1 DM, total is requirement.	blood nsulin	121
Table (2):	Sex distribution in studied subjects		.122
Table (3):	Liver function tests (pre transplantation):		.122
Table (4):	Kidney function tests (pre transplantation):		.122
Table (5):	Complete Blood Picture (pre transplantation	on):	.123
Table (6):	Change in total insulin requirement transplantation		124
Table (7):	Fasting blood sugar:	•••••	.125
Table (8):	Post prandial blood sugar	•••••	.126
Table (9):	HbA1c	•••••	.127
Table (10):	C-peptide	•••••	.128
Table (11):	Interleukin 4	•••••	.129
Table (12):	Gamma interferon		.130

List of Figures

Figure	No.	Title	Page	No.
<u>Revie</u>	w of Li	terature:		
Figure	e (1):	Schematic diagram of immune reported in human type 1 diabetes me (T1DM) pathogenesis	ellitus	38
Figure	e (2):	(a) IFN- γ monomer. (b): INF- γ dimen	•	40
Figure	2 (3):	IL-4 structure has a conglobular fold (similar to other cytok stabilised by 3 disulphide bonds	ines),	45
Figure	e (4):	Embryonic stem cells		52
Figure	e (5):	Adult stem cells		55
Figure	e (6):	Processing disposable		108
Figure	· (7):	The Harvest instrument	• • • • • • • • • • • • • • • • • • • •	109
Figure	e (8): Bo	one marrow aspirate after separation mononuclear layer		110
Figure	e (9) :	Withdraw remaining plasma into sy with blunt needle	_	111

List of Figures (Cont...)

Figure No	. Title	Page	No.
Results:			
Figure (1)	: Change in total insulin requirement transplantation.		.124
Figure (2)	: Fasting blood sugar pre and transplantation3 and 6 month		.125
Figure (3)	Post prandial blood sugar pre and transplantation 3 and 6 months.		.126
Figure (4)	HbA1C pre and after transplantation 3 months.		.127
Figure (5)	: C-peptide pre and after transplantation 3 m and 6months		.128
Figure (6)	Interleukin 4 pre and after transplantation months.		.129
Figure (7)	Gamma interferon pre and after transplant 2, 4, 6 months.		.130

Introduction

Type 1 DM comprises only 5% to 10% of all diabetic etiologiesbut is associated with a high frequency of vascular complications and compromises quality and expectancy of life(Rubin *1999*).Combination and Peyrot, of immunologic, and non genetic factors contributes to the onset and progression of Type 1 DM (Atkinson and Maclaren, 1994; Lipton et al., 1992). Specific HLA antigens, in particular DR3 and DR4, have been associated with increased risk for Type 1 DM development (Lipton et al., 1992; Barbesion et al., 1997), while DR2 alleles generally have been described as "protective" of Type 1 DM (*Thorsby and Ronningen 1993*). In addition to HLA predisposing factors, viral infection, psychological factors, and dietary factors have been described as predisposing factors (Beyhum et al., 1997; Robinson and Fuller, 1985).

Pathologically autoimmune diabetes is characterized by mononuclear cell infiltration into the pancreatic islets, termed insulinitis. These mononuclear cells consists of CD4 + and CD8+ T cells, B cells, NK cells, and macrophages (Kawamoto et al., 2001). B-cells are among the earliest cells to infiltrate the pancreatic islets of NOD mice, and auto antibodies against islet antigens indicate disease onset in humans and mice. Despite this, autoantibody production is not sufficient to initiate disease and is disconnected from the occurrence of diabetes and (Lehuen al., *1990*). insulitis et Rather, B-cells multifunctional and are crucial antigen-presenting cells (APCs)

for priming proinflammatory T-cell responses to β -cell antigens (*Bouaziz et al.*, 2007) Transient B-cell depletion after the first signs of disease onset using anti-BLyS mAb also arrests diabetes progression and maintains NOD mice in a "honeymoon" state for extended periods (*Zekavat et al.*, 2008). However, in general, T lymphocytes play the most pivotal role in initiating the disease process (*Sempe et al.*, 1991).

In 1986, *Mosmann et al* reported that upon activation CD4+ T cells will differentiate into two distinct T helper (Th) cell clones expressing distinct cytokine profiles and effector functions, thus giving rise to a unifying Th1/Th2 paradigm. Central to this are the specific requirements for induction of Th1 and Th2 activities, including the nature of APC (macrophages, dentritic cells, or B cells) (*Macatonia et al.*, 1993; *Duncan and Swain 1994*), strength of TcR binding to processed antigen, and Th1 and Th2 cytokines (*Romagnani*, 1995). Th1 cells produce IL-2 and gamma interferon (IFN- γ), while Th2 cells produce IL-4, IL-5, IL-10, and IL-13 (*Robinson and Fuller*, 1985).

Th0 cells, which produce both Th1 and Th2 cytokines, are generally regarded as precursors for Th1 and Th2 cells, being swayed into differentiating into either pathway in response to external stimuli and also in response to Th1 and Th2 cytokines (*Swain et al.*, *1990; Sad and Mosmann 1994*).

Th1 cytokines induce Th1 activity and block Th2 activity (*Hsieh et al.*, 1993), whereas Th2 cytokines promote Th2