

TIME OF MAXIMUM RESOLUTION OF DIABETIC MACULAR EDEMA FOLLOWING INTRAVITREAL BEVACIZUMAB

THESIS

Submitted for partial fulfillment of master degree in Ophthalmology

BY

Lilian Tarek Hanafi Mahmoud

(MB, B.Ch) Cairo University

Supervised by

Prof. Dr. Randa Abd Elrazik

Professor of Ophthalmology Faculty of medicine, Cairo University

Prof. Dr. Riad Shalash

Professor of ophthalmology Faculty of medicine, Cairo University

Dr. Ahmed Abd Elbaky

Lecturer of Ophthalmology
Faculty of medicine, Cairo University
Faculty of Medicine Cairo University

Cairo- Egypt 2014

List of Contents

	Pages
List of Abbreviations	i
List of Figures	iv
List of Tables	v
Introduction and Aim of the work	1
Review of literature	
Chapter 1: Anatomy & physiology of the macular	4
blood supply	
Chapter 2: Pathophysiology of diabetic macular	16
Edema	
Chapter 3: vascular endothelial growth factor	29
Chapter 4: Anti-VEGF	33
Chapter 5: optical coherence topography	48
Patients and methods	53
Results	59
Discussion	73
Conclusion and Recommendations	77
Summary	79
References.	82
Arabic Summary	_

List Of Figures

Figure.		
No.	Title	Page
1	Schematic representation of capillary distribution within the inner layers of the retina.	7
2	The outer blood retinal barrier and the site of junctional complex of the RPE.	9
3	Schematic overview of the three types of endothelial junctions of	12
3	the BRB.	12
4	Fundus photograph of CSME demonstrating retinal exudates within fovea.	16
5	Pathogenesis of diabetic macular edema.	19
6	Focal diabetic macular edema.	27
7	Diffuse diabetic macular edema.	28
8	Vascular endothelial growth factor molecule.	29
9	Bevacizumab a 3 dimensional structural diagram.	35
10	ETDRS regions of the macula and macular thickness map	48
	measurements /µm.	
11	The classification of clinically significant diabetic macular edema	51
	by optical coherence tomographic features.	
12	OCT/ OTI that has been used to measure CFT of the patients.	56
13	Changes in BCVA after IVB.	61
14	Changes in CFT with OCT during follow up after IVB.	63
15	correlation between CFT and BCVA during weeks 1,2,3 post	64
	injection	
16	Percent of patients that needed reinjection.	65
17	OCT scans of case no.1(pre injection, 1,2 and 3 weeks post	66
	injection)	
18	OCT scans of case no.2(pre injection, 1,2 and 3 weeks post	67
	injection)	
19	OCT scans of case no.3(pre injection, 1,2 and 3 weeks post	68
	injection)	
20	OCT scans of case no.4(pre injection, 1,2 and 3 weeks post	69
	injection)	
21	OCT scans of case no.5(pre injection, 1,2 and 3 weeks post	70
	injection)	
22	OCT scans of case no.6(pre injection, 1,2 and 3 weeks post	71
	injection)	
23	OCT scans of case no.7(pre injection, 1,2 and 3 weeks post	72
	injection)	

LIST OF TABLES:

Table. No.	Title	Page
1	Non ocular and ocular adverse events after intravitreal injection	
	of avastin.	43
2	Thickness in different zones of the retina.	48
3	Comparison between pre injection BCVA, 1, 2, and 3 weeks post	
	injection BCVA.	60
4	Comparison between pre injection CFT, 1, 2, and 3 weeks post injection CFT.	62

LIST OF ABBREVIATIONS

A II	Angiotensin II
Ang-1	Angiopoietin
AMD	Age Related Macular Degeneration
ARVO	Association for Research in Vision and
	Ophthalmology
BCVA	Best Corrected Visual Acuity
b-FGF	Basic Fibroblast Growth Factor
BL	Basal Lamina
BRB	Blood Retinal Barrier
CFT	Central Foveal Thickness
CMT	Central Macular Thickness
CNV	Choroidal Neovascularization
CSME	Clinically Significant Macular Edema
DEP-1	Density Enhanced Phosphatase 1
DME	Diabetic Macular Edema
DR	Diabetic Retinopathy
eNOS	Endothelial Nitric Oxide Synthase
ET	Endothelins
ETDRS	Early Treatment Diabetic Retinopathy Study
ERMs	Epiretinal Membranes
FA	Fluroscein Angiography
FAZ	Foveolar Avascular Zone
FDA	Food And Drug Administration

LIST OF ABBREVIATIONS (cont.)

GDNF	Glial Cell Derived Neurotropic Factor
HDL	High Density Lipoproteins
IgG	Immunoglobulin G
ILM	Internal Limiting Membrane
IOP	Intraocular Pressure
IVB	Intravitreal Bevacizumab
LDL	Low Density Lipoprotein
Mab	Monoclonal Antibody
MAPK	Mitogen Activated Protein Kinase
MLT	Macular Laser Treatment
MPC	Macular laser photocoagulation
MMPs	Matrix Metalloproteinases
NPDR	Non Proliferative Diabetic Retinopathy
OCT	Optical Coherence Tomography
PDGF	Platelet Derived Growth Factor
PDR	Proliferative Diabetic Retinopathy
PEDF	Pigment Epithelium Derived Factor
PKC	Protein Kinase C
PRP	Pan Retinal Photocoagulation
PVD	Posterior Vitreous Detachment
PVR	Proliferative Vitreo Retinopathy
RAGE	Receptor Of Advanced Glycation End Products
RAS	Renin Angiotensin System
RPE	Retinal Pigment Epithelium

LIST OF ABBREVIATIONS (cont.)

RVE	Retinal Vascular Endothelium
SCMT	Standardized Change In Macular Thickness
TGF-ß	Transforming Growth Factor Beta
Tie	Tyrosine Kinase Receptor
VAMP-2	Vesicle Associated Membrane Proein -2
VE Cadherin	Vascular Endothelial Cadherin
VEGF	Vascular Endothelium Growth Factor
VE-PTP	Vascular Endothelial Protein Tyrosine Phosphatase
ZO	Zonula Occludens
HRT	Heidelberg Retinal Technology

ACKNOWLEDGEMENT

First of all, thanks are all due to Allah for blessing this work until it has reached its end, as part of his generous help throughout our life.

Foremost, I would like to express my sincere gratitude and appreciation to my supervisors *Prof. Dr. Randa Abd El Razik, Prof.Dr. Riad Shalash* and *Dr. Ahmed Abd El Baki* for their continuous support and patience. Their guidance helped me in all time of research and writing of this thesis.

Lastly, a very special thank you to my father who has been a source of encouragement, inspiration to me throughout life and his infinite support to me in my determination to find and realize my potential. I am honored to have him like a father.

At last, thanks to my husband for his honest help and continuous advise to finalize this work, thanks to my family for their support and for giving me a chance to prove and improve myself through all my walks of life.

Lilian Tarek Hanafi Mahmoud

Introduction

Diabetic retinopathy (DR) is a major cause of visual loss in patients with diabetes mellitus. Diabetic macular edema (DME), which can occur at any stage of DR, is characterised by increased vascular permeability and the deposition of hard exudates at the central retina (**Klein et al., 1998**). Although visual loss secondary to proliferative changes is more common in patients with type 1 diabetes, visual loss in patients with type II diabetes is more commonly due to macular edema (**Wormald et al., 2004**).

It has been well established that vascular endothelial growth factor (VEGF) plays a vital role in promoting neovascularization and increased vascular permeability in diabetic eyes. Levels of ocular VEGF are correlated with both the rate of growth and permeability of new vessels (Aiello et al., 1994).

Hypoxia has been shown to be a major inducer of VEGF gene transcription (Ferrara, 2004).

Studies have shown that vitreous samples from patients with DME contain elevated VEGF levels. Furthermore, introduction of VEGF into normal primate eyes induces the same pathological processes as seen in diabetic retinopathy, namely micro aneurysm formation and increased vascular permeability (**Tolentino et al., 2002**). Also, it was found that the growth of new vessels from the retina or optic nerve was thought to occur as a result of VEGF release into the vitreous cavity as a response to ischemia (**Cunningham et al., 2005**).

Because VEGF has been shown to play a major role in macular edema and retinal neovascularization, anti-VEGF treatments have been hypothesized as an alternative adjunctive treatment for DME (**Diabetic retinopathy study, 2005**).

Bevacizumab (Avastin, Genentech Inc., San Francisco, CA) is a complete full-length humanized antibody that binds to all subtypes of VEGF and is used successfully in tumor therapy as a systemic drug (Ferrara et al., 2004). Recent studies have demonstrated the usefulness of an intravitreal injection of bevacizumab in the reduction of macular edema secondary to central retinal vein occlusion, vascular permeability and fibrovascular proliferation in retinal neovascularization secondary to PDR, and choroidal neovascularization secondary to age-related macular degeneration (AMD) (Spaide et al., 2006).

The amount of human retinal penetration for a complete full-length anti-VEGF antibody is not known. However, full-thickness retinal penetration of intravitreal bevacizumab was observed in an animal model. (Shahar et al., 2006).

Optical coherence tomography (OCT) is a retinal imaging technique that has applications in the diagnosis and management of a variety of diseases of the macula and optic nerve. Optical coherence tomography produces cross-sectional images of optical reflectivity in the retina in analogy to ultrasound B-scan, but with higher resolution. In patients with DR, single measurements of central foveal thickness using OCT correlate with visual acuity and provide a means of monitoring macular thickening (Hee et al., 1995).

Aim Of The Work

The aim of this study is to determine the time interval for maximum reduction in macular thickness in diabetic macular edema after single intravitreal Avastin injection as monitored by OCT which will allow for best results after laser application.

Anatomy Of The Macular Blood Supply

Blood supply of the macula:

Apart from the foveolar avascular zone (FAZ) the remaining human retina is too thick to be supplied by either the retinal or the choroidal circulation alone. The reason for this dual dependence is that diffusion time increases by the square of the distance. The choroidal circulation thus supplies the outer retina, whereas the inner retina is supplied by the retinal circulation (Saint-Geniez, 2004).

Retinal circulation:

The central retinal artery emerges from within the optic cup to give rise to the retinal circulation with its four main branches, the superior and inferior temporal and nasal retinal arteries. The retinal arteries are end arteries and travel outwards towards the peripheral retina within the nerve fiber layer. The smaller arterioles give rise to two types of capillary systems: horizontal branches supply the superficial nerve fiber layer, whilst the deep branches enter the retina to form between one (periphery and perifoveal) and four (peripapillary) horizontal capillary layers in the inner retina, depending on retinal thickness (**Oyster**, **1999**). The retinal circulation thus supplies all layers of the neuroretina except the photoreceptor layer, which is avascular and dependent on the choriocapillaris.

All retinal capillary blood is returned via retinal venules into the central retinal vein, which, after exiting the optic nerve, drains either into the ophthalmic veins or into the cavernous sinus directly (**Oyster**, **1999**).

Choroidal circulation:

The outer retina, containing the RPE and the photoreceptors, is avascular and depends on the vascular support provided by the adjacent choroid. In the presence of cilioretinal vessels, the choroid can also supply the inner retina. The choroidal circulation is fed by the ophthalmic artery via the medial and lateral posterior ciliary arteries, each of which gives rise to one long and several short posterior ciliary arteries. Apart from minor contributions from recurrent branches of the long posterior ciliary arteries, essentially all blood in the choriocapillaris is supplied by the short posterior ciliary arteries, which enter the posterior globe close to the optic nerve (**Oyster**, **1999**).

The choriocapillaris supplies both the RPE and the photoreceptor layers. The choriocapillaris also requires a healthy RPE for its own formation and maintenance (La Cour, 2003).

The choriocapillaris is a single layer of densely arranged capillaries separated from the RPE by Bruch's membrane. The anatomic distance between the choriocapillaris and the photoreceptors is less than 20 μ m facilitating rapid diffusion (**Oyster**, 1999).

In 15-20% of population a variable portion of papillomacular bundle is supplied by one or more of cilioretinal arteries derived from ciliary circulation. Occasionally large cilioretinal artery may supply entire macular region (**Bonnet et al., 1982**).