

Faculty of Engineering Ain Shams University Cairo, Egypt

Soil Purification Capability during Infiltration of Polluted Water

By SHERIF AFIFI ABD EL MOTTALB

A Thesis Submitted to the
Faculty of Engineering at Ain Shams University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Civil Engineering – Structure Dept.

Supervisors

Prof. Dr. ALI ABD EL FATTAH ALI

Professor of Structural Engineering Faculty of Engineering Ain Shams University

Dr. TAREK ISMAIL MAHMOUD SABRY

Associate prof. of Public Work Eng., Faculty of Eng., Ain Shams University

Dr. HOSSAM EL DIN ABDALLAH ALI

Associate Prof, Of Structural Eng., Faculty of Eng., Ain Shams University.

2009

Faculty of Engineering Ain Shams University Cairo, Egypt

Soil Purification Capability during Infiltration of Polluted Water

A Thesis for

The M.Sc. Degree in Civil Engineering Civil Engineering – Structure Dept.

By SHERIF AFIFI ABD EL MOTTALB

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. ABD EL WAHID ALI GABR Prof. of structural Engineering El Azhar University, Cairo, Egypt.	••••••
Prof. Dr. MONA MOUSTAFA AID Prof. of structural Engineering Ain Shams University, Cairo, Egypt.	••••••
Prof. Dr. ALI ABD EL FATTAH ALI Prof. of structural Engineering Ain Shams University, Cairo, Egypt.	***************************************
	Date://2009

DEDICATION

This work takes a period from my life. I wish to dedicate it to who suffered to educate, build capacity and help my self to be as I am.

TO MY FATHER, MY MOTHER & MY SISTER

I wish to dedicate it also to who ease my life and share in carrying the responsibility to help me.

TO MY WIFE & MY DAUGHTER

For my wife care and encouragement and for my daughter smile.

STATEMENT

This thesis is submitted to Ain Shames University for the degree of Master of Science in Civil Engineering (Structural Engineering).

The work included in this thesis was carried out by the author in the Department of Structural Engineering, Faculty of Engineering, Ain Shames University, from October 2006 to February 2009.

No part of this thesis has submitted for a degree or a qualification at any other university or institute.

Date: -	//2009
Signature: -	
Name: - SHEI	RIF AFIFI ABD EL MOTTALE

ACKNOWLEDGMENT

First and foremost, great thanks are due to GOD the Beneficent and Merciful.

The candidate is deeply grateful and expresses his sincere appreciation to **Dr. Ali Abd El Fattah Ali**, professor of Structural Engineering, Faculty of Engineering, Ain Shams University, for his continuous encouragement, great support, supervision and kind help in carrying out this thesis.

Special great thanks to **Dr. Tarek Ismail Mahmoud Sabry,** Associate professor of Public Work Eng., Faculty of Eng., Ain Shams University, for his continuous encouragement, valuable advises and his brotherly guidance.

Special great thanks to **Dr. Hossam El Din Abdallah Ali**, Associate Professor of Structural Engineering, Faculty of Engineering, Ain Shams University, for his continuous encouragement, valuable advises and his brotherly guidance.

ABSTRACT

Name : - SHERIF AFIFI ABD EL MOTTALB

Title : - Soil Purification Capability during Infiltration

Of Polluted Water

Faculty: - Faculty of Engineering Ain Shams University

Specialty: - Civil Engineering – Structure Dept

Abstract: -

Sewage from homes and businesses contains bacteria, viruses, nutrients and some chemicals. It must be treated before it reaches ground water because of the potential for disease transmission and environmental contamination. Individual sewage-treatment systems commonly known as septic tank which isn't sufficient to treat wastewater to an acceptable limit based on the environmental point of view, so treatment by soil layers is a proven method of controlling negative environment effects of sewage.

The research work in this study is aimed towards selection of the most appropriate sand soil, the effective sand depth which gives the best removal efficiency and the best infiltration rate which gives best removal efficiency.

The experimental work plan was directed to investigate the impact of three different types of sand soil. A pilot plant was designed and installed at EL-BERKA wastewater treatment plant, in Cairo.

Continues flow pilot plant testing was conducted to achieve the study objective. The study resulted in the following conclusions:

- The effective sand type which gives the best removal efficiency is sand type (I), which is fine sand.
- The effective depth of sand which gives the best removal efficiency is 80cm.
- The best tested infiltration rate, which gives the maximum removal efficiency of pollutants, is 3m³/m²/d.

Chapter One: Introduction

1-1 General	1
1-2 Study Objectives	
1-3 Scope of Work	
1-3-1 Field Work	
1-3-2 Analytical Work	
1-3-2 Midryttedi Work	
Chapter Two	
Literature Review	
Literature Review	
2-1 Land Treatment Process	4
2-1-1 Introduction	4
2-1-2 Advantage of Wastewater Soil	
Treatment Processes	6
2-1-3 Comparison between Soil Treatments	
And Conventional Processes	7
2.2 The Effects of the Call on Channel winting of the Com-	7
2-2 The Effects of the Soil on Characteristics of the Sev	-
2-2-1 Purification Process of Wastewater through Soil	
2-2-1-1 Biological Process	
2-2-1-2 Physical Process	
2-2-1-3 Chemical Process	11
2-3 The Effects of Wastewater on the	
	1.5
Characteristics of the Soil	
2-3-1 Permeability	
2-3-2 PH	15
2-4 Water Quality Improvement In	
Soil and Aquifer	15
2-4-1 Dissolved and Suspended Solid	
2-4-2 Organic Carbon (BOD, COD, TOD)	
2-4-3 Microorganism, Bacteria, Virus	18
2-5 Hydraulic Loading Rate (Infiltration Rate)	20
. 2-6 Health Risks Associated with Wastewater	22
2 O IDAIH NISKS MOSUCIALU WILL WASICWALL	

2-7 Characteristic of Soil	23 24
Chapter Three: Experimental works:	
3-1 Introduction	26
3-2 Location of the Pilot of Study2	26
3-3 Wastewater Analysis Method2	26
3-4 Source of Wastewater3	30
3-5 Description of the Pilot Plant	0
3-6 Measured Parameters39	9
3-7 Variable Parameters	39
3-8 Experimental Design	89 89
3.8.2 Operation Procedure	43 44 44 44 44 45
3.8.2.8 Run No. 1/4	

CHAPTER (4)

Results and Discussions:

4.1 Introduction	47
4.2 Group No. (1)	48
4.2.1 Run No. (1/1)	
4.2.1.1 Concentrations versus time	
4.2.1.2 Effects of Depth on the Removal Efficiency	
4.2.1.3 The main Result Obtained From This Run	
4.2.2 Run No. (2/1)	
4.2.2.1 Concentrations versus time	53
4.2.2.2 Effects of Depth on the Removal Efficiency	56
4.2.2.3 The main Result Obtained	
From This Run	58
4.2.3 Run No. (3/1)	58
4.2.3.1 Concentrations versus time	58
4.2.3 .2 Effects of Depth on the Removal Efficiency	61
4.2.3.3 The main Result Obtained from This Run	63
4.2.3.4 The main Result Obtained from Group No. (1).	63
4.3 Group No. (2)	65
4.3.1 Run No. (1/2)	
4.3.1.1 Concentrations versus time	
4.3.1.2 Effects of Depth on the Removal Efficiency	68
4.3.1.3 The main Result Obtained From This Run	70
4.3.2 Run No. (2/2)	70
4.3.2.1 Concentrations versus time	
4.3.2.2 Effects of Depth on the Removal Efficiency	73
4.3.2.3 The main Result Obtained from This Run	75
4.3.2.4 The main Result Obtained From Group No.(2)	75
4.4 Group No. (3)	76
4.4.1 Run No. (1/3)	76
4.4.1.1 Concentrations versus time	77
4.4.1.2 Effects of Depth on the Removal Efficiency	80
4.4.1.3 The main Result Obtained from This Run	82
4.4.2 Run No. (2/3)	
4.4.2.1 Concentrations versus time	
4.4.2.2 Effects of Depth on the Removal Efficiency	
4.4.2.3 The main Result Obtained from This Run	
4.4.2.4 The main Result Obtained from Group No (3)	87

4.4.2.5 The Comparison between	
Group (1), Group (2) and Group (3)	88
4.5 Group No. (4)	
4.5.1 Run No. (1/4)	
4.5.1.1 Concentrations versus time	
4.5.1.2 Effects of Depth on the Removal Efficiency	
4.5.1.3 The main Result Obtained from This Run	
4.5.2 Run No. (2/4)	
4.5.2.1 Concentrations versus time	
4.5.2.2 Effects of Depth on the Removal Efficiency 4.5.2.3 The main Result Obtained from This Run	
4.5.2.4 The main Result Obtained from Group No. (4)	
4.5.2.4 The main Result Obtained from Group No. (4)	100
CHAPTER (5)	
Conclusions and Recommendations:	
5.1 Introduction.	102
5.2 Conclusions	102
5.3 Most Important Findings	104
5.4 Recommendation	105
5.5 Suggestion for Future Works	105
Appendix (1)	106
Appendix (2)	
Appendix (3)	
Appendix (4)	
Appendix (5)	
Appendix (6)	
Appendix (7)	
Appendix (8)	
Appendix (9)	146
References	151
120101 01100j	171

List of Tables

Page No.
Table (3-1): The Physical Properties of Sand36
Table (3-2): Grain size analysis for sand type (I)
Table (3-3): Grain size analysis for sand type (II)
Table (3-4): Grain size analysis for sand type (III):
Table (4-1): The Average Removal Efficiency at each depth For Run No.(1/1)53
Table (4-2): The Average Removal Efficiency at each depth For Run No.(2/1)
Table (4-3): The Average Removal Efficiency at each depth For Run No.(3/1)
Table (4-4): The Comparison between Different Runs in Group (1) For the average values at Depth 80 cm64
Table (4-5): The Average Removal Efficiency at each depth For Run No.(1/2)70
Table (4-6): The Average Removal Efficiency at each depth For Run (2/2)
Table (4-7): The Comparison between Different Runs in Group (2) For the average values at depth 80cm
Table (4-8): The Average Removal Efficiency at each depth For Run No. (1/3)82
Table (4-9): The Average Removal Efficiency at each depth For Run No. (2/3)87

Table (4-10): The Comparison between Different Runs in Group (3) For the average values at Depth 80 cm
Table (4-11): The Comparison between Different Groups No. (1), (2) and (3) For Sand type (I) Average values at Depth 80 cm
Table (4-12): The Average Removal Efficiency at each depth For Run No. (1/4)95
Table (4-13): The Average Removal Efficiency at each depth For Run No. (2/4)
Table (4-14): The Comparison between Different Runs in Group (4) For the average values at Depth 80 cm101
Table (A1-1): The concentrations for soluble COD through the Run at inlet and different depths
Table (A1-2): The concentrations for total COD through the Run at inlet and different depths107
Table (A1-3): The concentrations for TSS through the Run at inlet and different depths108
Table (A1-4): The concentrations for BOD through the Run at inlet and different depths
Table (A1-5): The Removal efficiency for soluble COD through The run at different depths109
Table (A1-6): The Removal efficiency for total COD through The run at different depths
Table (A1-7): The Removal efficiency for TSS through The run at different depths
Table (A1-8): The Removal efficiency for BOD at depth 120cm

Table (A2-1): The concentrations for soluble COD through the Run at inlet and different depths112
Table (A2-2): The concentrations for total COD through the Run at inlet and different depths112
Table (A2-3): The concentrations for TSS through the Run at inlet and different depths113
Table (A2-4): The concentrations for BOD through the Run at inlet and different depths113
Table (A2-5): The Removal efficiency for soluble COD through The run at different depths
Table (A2-6): The Removal efficiency for total COD through The run at different depths
Table (A2-7): The Removal efficiency for TSS through The run at different depths115
Table (A2-8): The Removal efficiency for BOD at depth 120cm
Table (A3-1): The concentrations for soluble COD through the Run at inlet and different depths117
Table (A3-2): The concentrations for total COD through the Run at inlet and different depths117
Table (A3-3): The concentrations for TSS through the Run at inlet and different depths118
Table (A3-4): The concentrations for BOD through the Run at inlet and different depths118
Table (A3-5): The Removal efficiency for soluble COD through The run at different depths

Table (A3-6): The Removal efficiency for total COD through The run at different depths
Table (A3-7): The Removal efficiency for TSS through The run at different depths
Table (A3-8): The Removal efficiency for BOD at depth 120cm
Table (A4-1): The concentrations for soluble COD through the Run at inlet and different depths122
Table (A4-2): The concentrations for total COD through the Run at inlet and different depths122
Table (A4-3): The concentrations for TSS through the Run at inlet and different depths123
Table (A4-4): The concentrations for BOD through the Run at inlet and different depths123
Table (A4-5): The Removal efficiency for soluble COD through The run at different depths
Table (A4-6): The Removal efficiency for total COD through The run at different depths
Table (A4-7): The Removal efficiency for TSS through The run at different depths
Table (A4-8): The Removal efficiency for BOD at depth 120cm
Table (A5-1): The concentrations for soluble COD through the Run at inlet and different depths127
Table (A5-2): The concentrations for total COD through the Run at inlet and different depths127
Table (A5-3): The concentrations for TSS through the Run at inlet and different depths 128

Table (A5-4): The concentrations for BOD through the Run at inlet and different depths128
Table (A5-5): The Removal efficiency for soluble COD through The run at different depths129
Table (A5-6): The Removal efficiency for total COD through The run at different depths
Table (A5-7): The Removal efficiency for TSS through The run at different depths
Table (A5-8): The Removal efficiency for BOD at depth 120cm
Table (A6-1): The concentrations for soluble COD through the Run at inlet and different depths
Table (A6-2): The concentrations for total COD through the Run at inlet and different depths
Table (A6-3): The concentrations for TSS through the Run at inlet and different depths
Table (A6-4): The concentrations for BOD through the Run at inlet and different depths
Table (A6-5): The Removal efficiency for soluble COD through The run at different depths
Table (A6-6): The Removal efficiency for total COD through The run at different depths
Table (A6-7): The Removal efficiency for TSS through The run at different depths
Table (A6-8): The Removal efficiency for BOD at depth 120cm
Table (A7-1): The concentrations for soluble COD through the Run at inlet and different depths 137