

Ain Shams University Faculty of Engineering

BOND CHARACTERISTICS BETWEEN HIGH STRENGTH CONCRETE (HSC) AND CARBON FIBER REINFORCED POLYMERS (CFRP)

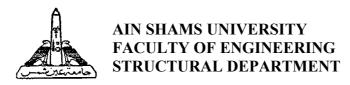
By Eng. Ayman Ahmed Mahmoud Moustafa

B.Sc. (2006) Structural Division – Civil Engineering Departement Faculty of Engineering – Ain Shams University

A Thesis

Submitted in Partial Fulfillment of the Requirements of the Degree of Master of Science in Civil Engineering (Structural)

Under the supervision of:


Prof. Dr. Amr A. Abdelrahman

Professor of Concrete Structures Ain Shams University

Dr. Khaled M. Hilal

Lecturer, Structural Engineering Department Ain Shams University

> 2009 Cairo - Egypt

Abstract of the M.Sc. Thesis Submitted by

Eng. / Ayman Ahmed Mahmoud Moustafa

Title of the Thesis:

BOND CHARACTERISTICS BETWEEN HIGH STRENGTH CONCRETE (HSC) AND CARBON FIBER REINFORCED POLYMERS (CFRP)

Supervisors:

Prof. Dr. Amr A. Abdelrahman Dr. Khaled M. Hilal

ABSTRACT

Use of fiber reinforced polymers, FRP in strengthening reinforced concrete elements, has increased rapidly in the last three decades. FRP is made of high-tensile-strength fibers such as carbon (CFRP), glass (GFRP), aramid (AFRP). FRP laminates (sheets and strips) are used widely to strengthen and repair different RC elements. FRP has an outstanding characteristic since it is corrosion free. This can increase significantly the service life of structures by reducing concrete deterioration. Other advantages of FRP laminates of particular interest in the field of structural applications are its high strength-to-weight ratio, good fatigue behavior, low relaxation, and easy handling and installation. The drawbacks of FRP reinforcement include its high cost, brittle failure, low shear strength, lack of ductility due its linear stress-strain behavior up to failure, and low tensile strain at ultimate.

Although the FRP has very high tensile strength, this is often not fully utilized due to the possible debonding between the FRP and the concrete surface under relatively lower loads. Debonding is one of the main problems regarding the use of externally bonded FRP strips. Several types of debonding may occur when strengthening concrete beams with FRP strips. These types can be generally divided into two main groups: i) plate end debonding; where the debonding occurs at the end of the strip, and ii) intermediate crack debonding; where the debonding occurs under the flexural or flexural shear cracks. This thesis aims to investigate the bond characteristics between high strength concrete beams and carbon fiber reinforced polymers, CFRP. The intermediate crack debonding is the major debonding failure mode.

An experimental program was conducted at the Reinforced Concrete Research Unit at the Faculty of Engineering, Ain Shams University to study the behavior of RC beams strengthened by CFRP strips. The program consists of testing eight simply supported beams with overall dimensions of 150 mm width, 300 mm depth and 3000 mm length, divided into four groups depending on different parameters. The first group consisted of three beams varying in compressive strength (specimens B1 to B3). The second group consisted of three beams varying in bond length (specimens B3, B4 and B6). The third group consisted of three beams varying in wrapping system (specimens B6 to B8). The fourth group consisted of two beams varying in concrete cover (specimens B3 and B5). The analytical phase of this study includes a rational analysis to predict the behavior of RC beams strengthened with CFRP strips at the tension side of the beam and GFRP sheets used as U-wraps. An assessment regarding some of the existing codes provisions

and models from the literature to predict intermediate crack debonding was performed. Based on the experimental results of the tested beams and the analytical work, new parameters were proposed to predict the intermediate crack debonding failure for simply supported beams strengthened with CFRP strips.

Keywords: Bond, CFRP, Composite materials, Concrete structures, High strength concrete beams, and Intermediate crack debonding.

ACKNOWLEDGMENTS

First of all, I thank ALLAH who guided and helped me to finish this work in the proper shape.

The support of my father, my mother and my family cannot be praised enough; to them this thesis is dedicated.

I wish to record my special appreciation and gratitude to his advisor, Dr. Khaled M. Hilal, for his valuable guidance, helpful suggestion and continuous support during the research program.

I wish also to express my sincere gratitude to his research supervisor, Prof. Dr. Amr A. Abdelrahman, for his valuable advices, comments and his efforts in reviewing the manuscript.

Special Thanks to Dr. Hany EL-Shafie for his valuable help; especially through the preparation of the High Strength Concrete stage.

The effort of the technicians of the reinforced concrete laboratory, Ain Shams University is also appreciated.

Finally, I would like to thank my friends and colleagues who helped me in the completion of this work, especially Dr. Tamer EL-Afandy and Eng. Ahmed Mantawy.

STATEMENT

This thesis is submitted to Ain Shams University in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering (Structural).

The work included was carried out by the author at reinforced concrete laboratory of the faculty of engineering, Ain Shams University.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date : 26 / 7 / 2009

Name : Ayman Ahmed Mahmoud Moustafa

Signature : Ayman Moustafa

TABLE OF CONTENTS

APPROVAL SHEET	i
ABSTRACT	ii
ACKNOWLEDGMENT	v
STATEMENT	vi
TABLE OF CONTENTS	vii
LIST OF SYMBOLS	xi
LIST OF TABLES	xiv
LIST OF FIGURES	XV
1. INTRODUCTION	1
1.1 GENERAL	1
1.2 OBJECTIVES	2
1.3 SCOPE AND CONTENTS	3
2. LITERATURE REVIEW	7
2.1 INTRODUCTION.	7
2.2 PLATE-END (PE) DEBONDING	10
2.2.1 INTERFACIAL STRESS MODELS	12
2.2.2 SHEAR STRENGTH MODELS	15
2.2.3 CONCRETE TOOTH MODELS	17
2.2.4 EXPERIMENTAL STUDIES ON PLATE END	
DEBONDING	19

2.3 INTERMEDIATE CRACK DEBONDING	20
2.3.1 EMPERICAL MODELS	23
2.3.2 MECHANICS BASED MODELS	25
2.3.3 FRACTURE BASED MODELS	32
3. THE EXPERIMENTAL PROGRAM	40
3.1 GENERAL	40
3.2 TEST SPECIMENS	41
3.3 FABRICATION OF TEST SPECIMENS	46
3.3.1 FABRICATION OF CONCRETE BEAMS	46
3.3.2 APPLICATION OF STRENGTHENING	
SCHEMES	49
3.4 MATERIAL PROPERTIES	52
3.4.1 CONCRETE	52
3.4.2 STEEL	55
3.4.3 CFRP STRIPS, GFRP SHEETS AND EPOXY	
PASTE	55
3.5 INSTRUMENTATION	58
3.5.1 LOAD AND COMPRESSIVE FORCE	
MEASUREMENTS	58
3.5.2 DEFLECTION MEASUREMENTS	60
3.5.3 STEEL AND CFRP STRAINS MEASUREMENTS	61
3.6 TEST SET-UP	65
4. RESULTS OF THE EXPERIMENTAL PROGRAM	66
4.1 GENERAL	66
A 2 TEST DESILITS	67

5. DISCUSSION OF THE EXPERIMENTAL RESULTS	112
5.1 GENERAL	112
5.2 DISCUSSION OF THE EXPERIMENTAL RESULTS	113
5.2.1 EFFECT OF THE VARIATION OF CONCRETE	
COMPRESSIVE STRENGTH	113
5.2.2 EFFECT OF CFRP BOND LENGTH	117
5.2.3 EFFECT OF WRAPPING SYSTEM	120
5.2.4 EFFECT OF CONCRETE COVER THICKNESS	125
6. ANALYTICAL STUDY	130
6.1 GENERAL	130
6.2 EXISTING INTERMEDIATE CRACK DEBONDING	
MODELS	130
6.2.1 PROCEDURE OF PREDICTING INTERMEDIATE	
CRACK DEBONDING FAILURE	130
6.2.2 ACI 440.2R-08 Design Guide	133
6.2.3 Egyptian Code of Practice "ECP 208-2005"	136
6.2.4 Model proposed by Said, H. and Wu, Z. S. (2008)	137
6.2.5 fib (2001)	138
6.2.6 The Concrete Society (2004)	140
6.2.7 Model proposed by Lu (2004)	140
6.2.8 Chinese Code	141
6.2.9 Model proposed by Pan Jianwu and Cao Shuangy	
(2005)	142
6.2.10 Summary of the Available Analytical Models	144
6.3 COMPARISON BETWEEN EXPERIMENTAL AND	
ANALYTICAL RESULTS	145

6.4 PROPOSED ANALYTICAL MODELS	167
7. SUMMARY, CONCLUSIONS AND DESIGN	
RECOMMENDATIONS	176
7.1 SUMMARY	176
7.2 CONCLUSIONS	178
7.3 DESIGN RECOMMENDATIONS	180
7.4 FUTURE WORK	181
REFERENCES	182
APPENDIX A / CALCULATIONS	193

List of Symbols

LIST OF SYMBOLS

a = the distance between the support and the location of the acting load.

 A_c = area of concrete.

 A_{CFRP} = area of the CFRP laminates.

 A_{GFRP} = area of the GFRP laminates.

 A_s = area of the bottom steel reinforcement.

 A_{sc} = area of the top steel reinforcement.

 b_c = width of concrete beam.

 b_f = width of FRP strip.

c = neutral axis depth from the compression fiber.

 d_s = depth of the bottom steel reinforcement from compression fiber.

 $d_{sc}=$ depth of the top steel reinforcement from compression fiber.

 d_{CFRP} = depth of the CFRP laminates from compression fiber.

 d_{GFRP} = depth of the GFRP laminates from compression fiber.

 E_c = elastic modulus of concrete.

 E_{CFRP} = elastic modulus of CFRP laminates.

E_s = elastic modulus of steel reinforcement.

 f_c = concrete stress in compression.

 f_s = stress of the bottom steel reinforcement.

 f_{sc} = stress of the top steel reinforcement.

 f_{CFRP} = stress of the CFRP laminates.

 f_{GFRP} = stress of the GFRP laminates.

 k_c = factor accounting for the state of compaction of concrete.

 k_m = reduction factor for the debonding strain in the FRP.

L =the beam clear span.

M = bending moment.

 $N_{fa,max}$ = the maximum FRP force which can be anchored.

P = the acting load on the beam.

 P_{max} = maximum load.

P_y = load at yielding of bottom steel reinforcement.

y = distance, measured from the neutral axis.

 ϵ_{sc} = Maximum measured compression strain in top steel reinforcement.

 ε_{st} = Maximum measured tensile strain in bottom steel reinforcement.

 ϵ_{cu} = ultimate strain of the concrete in compression.

 ε_{fd} = debonding strain of the CFRP strip.

 ε_s = strain of the bottom steel reinforcement.

 ε_{sc} = strain of the top steel reinforcement.

 ε_{CFRP} = strain of the CFRP laminates.

 ε_{GFRP} = strain of the GFRP laminates.

 $\Delta_{\rm u}$ = deflection at failure load.

 $\alpha_1, \beta_1 =$ stress block factors.

α = reduction factor to account for the influence of inclined cracks on the bond strength.

 λ_a = factor to take into account the effect of U-wraps.

LIST OF TABLES

Table		
3.1	Parameters of the Different Specimens	45
3.2	Proportions for Concrete Mixes used in Test	
	Specimens	54
3.3	Compressive Strength of the Tested Cubes	54
3.4	Basic Mechanical Characteristics of High Tensile	
	Steel	55
3.5	Mechanical Characteristics of Sikadure-31 epoxy	57
3.6	Mechanical Characteristics of the epoxy resin	57
4.1	Parameters of the Different Specimens	66
4.2	Failure Loads, Deflections, Steel Strains, and CFRP	
	Strains at failure and observed Modes of Failure for all	
	Test Specimens	68
6.1	Considered Variables in the Different Analytical	
	Models	144
6.2	Comparison between Measured and Calculated	
	Debonding Strains for all Test Specimens	154
6.3	Comparison between Different Analytical Models	164
6.4	Statistical Analysis of the Proposed Models Compared	
	with ACI 440.2R-08	175

LIST OF FIGURES

Figure		
2.1	Failure Modes of RC Beams Strengthened with FRP	
	strips	9
2.2	Debonding Propagation from Plate End	10
2.3	The Behavior of a Concrete Tooth	18
2.4	Debonding Propagation from Intermediate Cracks	20
2.5	Lap-Shear Tests	22
2.6	Internal Force Variations Before and After the	
	Yielding of Tensile Steel	26
2.7	Comparison of predicted and measured data at an	
	advanced stage of elasto-plastic behavior	29
2.8	Interfacial Bond Stress Blocks	32
2.9	Concrete – FRP Bonded Joint	33
2.10	Simplified Interfacial Shear Stress versus Slip	
	Relationships and Shear Stress Propagations during	
	Loading	34
2.11	Perimeter Length of Idealized Failure Plane	38
3.1	All Tested Specimens	42
3.2	Reinforcement Details for Specimens B1 to B8	42
3.3	Different Bond Lengths for Test Specimens	43
3.4	Different Wrapping Systems for Test Specimens	44
3.5	Steel Reinforcement	47