PATTERN OF IRON DEFICIENCY ANEMIA IN PEDIATRIC EMERGENCY ROOM AND ITS RELATION TO PROGNOSIS

Ehesis

Submitted for Partial Fulfillment of Master Degree
In **Pediatrics**

Presented By Mohammed Karem Abd El-Azeem

(M.B., B.CH.2008)

Under Supervision of

Prof. Dr. Mohsen Saleh El-Alfy

Professor of Pediatrics Faculty of Medicine – Ain Shams University

Dr. Ahmed Al-Saild Hamed

Assistant Professor of Pediatrics Faculty of Medicine – Ain Shams University

Dr. Nihal Saad El-Kinawy

Consultant of Clinical Pathology Faculty of Medicine – Ain Shams University

Faculty of Medicine

Ain Shams University

2015

Acknowledgment

First of all, I would like to thank "ALLAH" who granted me the strength to accomplish this work.

Words fail to express my deepest gratitude and appreciation to **Prof. Dr. Mohsen Saleh El-Alfy,** Professor of Pediatrics, Ain Shams University for giving me the opportunity to work under his meticulous supervision and for his excellent guidance and powerful support.

My deepest thanks and appreciation go to **Dr**. **Ahmed El-Saeed Hamed**, Assistant Professor of pediatrics, Ain Shams University, who honored me by her great supervision, valuable guidance and precious time.

I would like to express my true thanks to **Dr**. **Nihal Saad El-kinawy,** Consultant of clinical pathology, Ain Shams University, for his great guidance and advices throughout this work.

My true love and warmest gratitude go to all my family, who were, and still always be, by my side and without whom I would have never been able to accomplish this work.

Last but not least, I would like to express my gratitude to my patients and their families and to every person who helped me while performing this work.

Mohammed Karem Abd El-Azeem

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iii
List of Figures	vi
Abstract	viii
Introduction	1
Aim of the Work	15
Review of Literature	4
Anemia in Children	17
Iron and Iron Deficiency Anemia	51
Iron Deficiency Anemia in Children	72
Patients and Methods	97
Results	108
Discussion	134
Summary	149
Conclusion	153
Recommendations	155
References	157

List of Abbreviations

BF : Breast feeding

CBC : Complete Blood CountCT : Computed tomography

DFO : Desferrioxamine**DNA** : Dioxynucleic Acid

EPO : Erythropoietin

FEP: Free erythrocyte protoporphrin

FL: Femtiiter

Ft : Serum ferritin

G6PD : Glucose 6 phosphate dehydrogenase deficiency

GH : Growth Hormone

HAMP : Hepcidin antimicrobial peptide

HCT : Hematocrit

HFA : Height for ageHGB : hemoglobin

HIV : Human immunodeficiency virus

HO-1 : Hemeoxygenase 1

HR : Heart rate

HUS : Hemolytic uremic syndrome

ID : Iron deficiency

IDA : Iron deficiency anemia

IL-6 : Interleukin-6Lab : Laboratory

LDH : Lactate dehydrogenase

MCH : Mean Corpuscular Hemoglobin

MCHC: Mean Corpuscular Hemoglobin Concentration

MCV : Mean Corpuscular Volume

List of Abbreviations (Cont.)

NH : Neutrophil hypersegmentation

NRBCs : Nucleated RBCs
PCV : Packed cell volume

PedNSS : Pediatric Nutrition Surveillance System
PNH : Paroxysmal nocturnal hemoglobinuria

PRBCs: Packed Red Blood Cells

RBCs : Red Blood Cells

RDW: Red blood cells Distribution Width

Rh : Rhesus factor
RR : Respiratory rate
SD : Standard Deviation

SI : Serum iron

SNAP : Supplemental Nutrition Assistance Program

SPSS : Statistical program for social science

TEMP : Temperature Tf : Transferrin

TfR : Transferrin receptor

TIBC : Total iron binding capacity
TIBC : Total iron binding capacity

Tr mRNA : Transferring messenger ribonucleic acid
TTP : Thrombotic thrompocytopenic purpura

UIBC : Unsaturated Iron-binding capacity

USA : United State of America

WBCs : White blood cellsWFA : Weight for ageWFH : Weight for length

WHO : World health organization

A : Alpha

β : Beta

List of Tables

Eable No	v. Eitle Page No.
Table (1):	Common causes of intravascular and extravascular hemolysis in the adult
Table (2):	Differential diagnosis of anemia25
Table (3):	Factors that influence iron absorption 62
Table (4):	Iron requirements according to the age 66
Table (5):	Volumes are pipetted in to cuvetts to detect serum Iron
Table (6):	Volumes are pipetted in to cuvetts to detect iron binding capacity
Table (7):	Descriptive data of the study group 110
Table (8):	Order of birth in the study group111
Table (9):	Pattern of milk feeding during the first 6 months of life among studied children112
Table (10):	Age at start of weaning among the studied children
Table (11):	Socio-economic status of the studied children
Table (12):	Values of z-score of anthropometric measurements of the studied children
Table (13):	History suggestive of Anemia 114
Table (14):	Clinical examination data of the study group

Table (15): Laboratory data of the studied children
--

List of Tables (Cont.)

Eable No	o. Eitle F	age No.
Table (16):	Distribution of anemia among the stuchildren.	
Table (17):	Comparison between non anemic chi and children with IDA regarding age	
Table (18):	Comparison between non anemic chi and children with IDA regarding gende	
Table (19):	Comparison between non anemic chi and children with IDA regarding the in birth.	order
Table (20):	Comparison between non anemic chi and children with IDA regarding intake in first 6 months.	milk
Table (21):	Comparison between non anemic chi and children with IDA regarding anthropometric measurements	the
Table (22):	Correlations between hemoglobin pe and risk factors for anemia	
Table (23):	Descriptive data of the Bronchopneum group	
Table (24):	Comparison between patients with and Non Anemic patients bronchopneumonia	with
Table (25):	Correlation between clinical improve (duration of hospital stay and improvement	

bronchopneumonia group		
Cable No	v. Eitle Page No.	
Table (26):	Descriptive data of patients with bronchilolitis	
Table (27):	Comparison between patients with IDA and non anemic patients with bronchoiolitis	
Table (28):	Correlation between duration of hospital stay and improvement of Respiratory Distress in bronchoiolitis group. 127	
Table (29):	Descriptive data of patients with convulsion	
Table (30):	Comparison between patients with IDA and non anemic patients with convulsions 130	
Table (31):	Correlation between duration of hospital stay and improvement of seizures in convulsion group	

fever and hematological parameters in

List of Figures

Figure No	o.	Citle	Pag	ge No.
Figure (1):	Hypochromic variant hemog			
Figure (2):	Evaluation of corpuscular vo			
Figure (3):	Iron cycle in the	he body	• • • • • • • • • • • • • • • • • • • •	54
Figure (4):	Hepcidin-med homeostasis			
Figure (5):	Response of the to the level of			
Figure (6):	Order of birth	in the study gr	oup	111
Figure (7):	Distribution of children			
Figure (8):	Days of fever pneumonia gro	-		
Figure (9):	Correlation be and TIBC	•	-	•
Figure (10):	Correlation improvement			
Figure (11):	Correlation improvement			
Figure (12):	Correlation improvement		•	
Figure (13):	Correlation improvement			

List of Figures (Cont.)

Figure No.	Citle	₽age No.
Figure (14):	Correlation between days of hospita and S iron	•
Figure (15):	Correlation between days of hospita and TIBC	•
Figure (16):	Correlation between Days improvement and TIBC	
Figure (17):	Duration of hospital stay in convergeoup.	
Figure (18):	Days of seizure improvement convulsion group	
Figure (19):	Correlation between days of hospita and TIBC	•
Figure (20):	Correlation between Days improvement and HB%	
Figure (21):	Correlation between Days improvement and MCV	

Abstract

<u>Introduction:</u> Iron deficiency (ID) and iron-deficiency anemia (IDA) continue to be of worldwide concern. Among children in the developing world, iron is the most common single-nutrient deficiency. IDA remains a common cause of anemia in young children. In early childhood, bad feeding habits, especially during the weaning period, exacerbate the problem.

<u>Aim of the work:</u> to assess prevalence of iron deficiency anemia among children attending emergency room in pediatric hospital of Ain Shams University and its impact on management and prognosis of the underlying disease.

Methodology: 200 children (114 males and 86 females) with mean of age 1.781±1.245 years, recruited among those attending emergency room. All infants were subjected to full history taking, thorough examination and laboratory investigations including; Hb%, CBC, serum iron and TIBC, then patients were divided into 2 groups; Group(1): non anemic children and Group (2): anemic children.

Results: 128 (64%) were anemic of whom 44 (34.37%) had IDA. There was statistically significant higher incidence of low social class (p=0.02), higher order of birth (p=0.001), higher duration of hospital stay (p=0.000) and days for improvement (p=0.02) in anemic patients compared to non-anemic group. There was statistically significant higher day for fever to improve in anemic patients with pneumonia compared to non-anemic group (p=0.025). There was statistically significant higher duration of hospital stay (p=0.03) and days of improvement (p=0.003) in anemic patients with convulsions compared to non-anemic patients. There was no statistically significant difference between anemic and non-anemic patients regarding duration of hospital stay and days of RD improvement in patients with bronchiolitis.

<u>Conclusion:</u> IDA is the most common cause of anemia among Egyptian children of low socioeconomic standard.

It may be an associated causal factor, especially as the length of hospitalization was generally short, and the patient was probably anemic at the time of admission.

Key words: IDA, TIBC, anemic children, pneumonia, bronchiolitis, convulsions

Introduction

Introduction

nemia is a global public health problem affects more than 30 percent of the world's population. It is generally assumed that 50% of the cases of anemia are due to iron deficiency anemia (*Glader*, 2007). A national nutrition survey showed the high prevalence of iron deficiency anemia in Egypt (*Kahn et al.*, 2002).

The most common causes of microcytic hypochromic anemia are iron deficiency and Beta thalassemia. Thalassemia trait is frequently misdiagnosed as iron deficiency anemia because the two are similar hematologically and iron deficiency is much more prevalent (*Wonke et al.*, 2007). Other rare causes include sideroblastic anemia, anemia of chronic diseases and lead poisoning (*Yip and Ramakrishnan*, 2002).

Factors that cause iron deficiency anemia include inadequate iron intake especially those with a history of prolonged breast feeding with delayed weaning, prolonged consumption of large amount of cow's milk and of food not supplemented with iron, periods of rapid growth, those who were low birth weight or born prematurely and loss of iron from bleeding especially from gastro intestinal tract (*Wright et al.*, 2004).

Beta-thalassemia, the most common genetic disorder in Egypt is a major health problem with an estimated carrier rate of 9-10% (*Hussein et al., 2007*). As consanguineous marriage is common in most Arabic countries, the incidence of genetic disease is high (*Weatherall and Clegg, 2001*).

Aim of the Work

