

Ain Shams University
Faculty of Engineering
Electrical Power & Machines Department

Protection of AC Feeding System for Electrified Railways

M.Sc. Thesis

By
Eng. Mostafa Gehad Mohamed Attia

Submitted in partial fulfillment of the requirements for the M.Sc. degree in Electrical Engineering

Supervised By

Prof. Dr. Hossam El Din Abd Allah Talaat

Dr. Mohamed Abd El Aziz Hassan Abd El Rahman

Dr. Mohamed Ezzat Abdelrahman

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

EXAMINERS COMMITTEE

Name: Mostafa Gehad Mohamed Attia

Thesis title: Protection of AC Feeding System For Electrified Railways

Degree: Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering

Name, title and affiliation

Signature

Prof. Dr. Almoataz Youssef Abdelaziz

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University.

Prof. Dr. Samah Mohamed Taha Elsafty

Productivity and quality institute Arab Academy for Science and Technology and Maritime Transport Alexandria

Prof. Dr. Hossam El Din Abd Allah Talaat

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

SUPERVISORS COMMITTEE

Name: Mostafa Gehad Mohamed Attia

Thesis title: Protection of AC Feeding System For Electrified Railways

Degree: Submitted in partial fulfillment of the requirements for the

M.Sc. degree in electrical engineering

Name, title and affiliation

Signature

Prof. Dr. Hossam El Din Abd Allah Talaat

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

Dr. Mohamed Abd El Aziz Hassan Abd El Rahman

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

Dr. Mohamed Ezzat Abdelrahman

Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University

STATEMENT

This Thesis is submitted to Ain Shams University in partial fulfillment of the requirements of M.Sc. degree in Electrical Engineering.

The included work in this thesis has been carried out by the author at the department of electrical power and machines, Ain Shams University. No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name: Mo	ostafa (Gehad Mohamed Attia	
Signature:			•
Date:	/	/ 2015	

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to **Professor. Dr. Hossam El Din Abd AllahTalaat** for the continuous support of my study and research, for his patience, motivation, immense knowledge, and teaching me how to think. His guidance helped me in all the time of research and writing of this thesis.

I wish to express my deep thanks to **Dr. Mohamed Abd El Aziz Hassan Abd El Rahman** for his supervision, supporting, helpful advice, continuous guidance, theoretical advice, fruitful criticism and encouragement during the work.

I wish to express my deep thanks to **Dr. Mohamed Ezzat Abd El Rahman** for his continuous guidance, support, undeniable technical information, critical advice and assistances during the stages of preparation of this work.

I wish to express my deepest gratitude to the soul of **Professor. Dr Mohamed Mohamed Mansour** for giving me the opportunity to work under his supervision, for sharing his incomparably profound knowledge with me, for deepening my understanding and helping me a lot at the beginning of this work.

Finally, I am grateful for my parents and my sister, who helped me throughout all of this work. Thank you for supporting me in every way.

Mostafa Gehad Mohamed Attia Cairo,2015

ABSTRACT

Railways are a safe land transport system when compared to other forms of transport. Power is provided to locomotives which either draw electrical power from a railway electrification system or produce their own power, usually by diesel engines.

For electrified railways; Power is transmitted to electric railway locomotives using DC or single phase AC networks. For AC electrified railways it is important to ensure a reliable and secure power supply to the traction system, therefore a suitable protection system is required. The protection system shall distinguish between the fault current and the train load current, and isolate the fault as soon as possible.

This thesis presents the modeling and simulation of a 25 kV 50 Hz AC traction system using Power System Block set (PSB) / SIMULINK software package. The model has been used to study different simulation cases considering the common types of faults.

A proposed distance relay algorithm is introduced. The performance of the proposed distance relay is checked in case of earth faults (normal and emergency feeding conditions), wrong phase coupling, and resistive faults. Furthermore, the proposed relay algorithm has a fault location function to detect the faulty subsection. The performance of fault location function is checked. Finally the proposed relay settings is selected to compromise between security requirements and sensitivity of fault detection to meet the operational requirements

The thesis consists of five chapters

<u>Chapter (1):</u> Gives an introduction of the railway systems and electrification systems.

<u>Chapter (2):</u> Introduces a literature survey for protection systems and material helpful for understanding the problem AC feeding system protection for electrified railways.

<u>Chapter (3):</u> Introduces the modeling methodology of the proposed distance relay algorithm.

<u>Chapter (4):</u> Introduces simulation and results for the proposed distance relay algorithm.

<u>Chapter (5):</u> Presents the extracted conclusions and future work suggestions.

TABLE OF CONTENTS

EXAMINERS COMMITTEE	i
SUPERVISORS COMMITTEE	ii
STATEMENT	iv
ACKNOWLEDGEMENT	V
ABSTRACT	v
TABLE OF CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	XV
1. INTRODUCTION	1-24
1.1 Background of railway systems	1
1.2 Electrification systems	2
1.2.1 DC – Power supply system	5
1.2.1.1 Structure of DC system	5
1.2.1.2 Positions of traction substations	7
1.2.1.3 DC feeding system protection	7
1.2.2 AC – Power supply system	8
1.2.2.1 Structure of AC feeding system	9
1.2.2.2 AC Power feeding system configurations	12
1.3 Contact systems	16
1.3.1 Catenary system	16
1.3.2 Third rail	18
1.4 Traction motors	19
1.4.1 Electric traction machines	19
1.4.2 Traction motors types	20
1.4.2.1 DC series motor	21
1.4.2.2 AC motors	22
1.5 Thesis objective and aim of research	22
1.6 Thesis outlines	23
2. LITRAEURE REVIEW OF DIFFRRENT PROTECTION TECHNIQUES	25-45
2.1 General	25
2.2 Electrified railways protection system requirements	25
2.3 Distance protection	26
2.4 Distance relay characteristics and settings	28
2.5 Thermal protection	30

2.6 Back up over-current protection	31
2.6.1 Types of over-current protection used	32
2.6.2 Philosophies of back up over current protection	34
2.6.2.1(On line) Back up definite time over current protection	n 34
2.6.2.2 (Stand by) Back up over current protection	34
2.7 Literature survey	35
2.8 Proposed protection approach	45
3. METHODOLOGY OF THE PROPOSED PROTECTION TECHNIQUE	46-62
3.1General	46
3.2 AC feeding system	47
3.3 Over head catenary system	49
3.4 Proposed relay algorithm	50
3.4.1 Principle	50
3.4.2 Impedance evaluation	51
3.4.3 Detection algorithm	51
3.4.4 Fault location	55
3.5 Effect of booster transformer	59
3.6 Wrong phase coupling faults	60
3.7 How to select distance relay settings	61
4. SIMULATION AND RESULTS OF THE PROPOSED TECHNIQUE	63-80
4.1 System under study	63
4.2 System model	64
4.2.1 General	64
4.2.2 Impedance calculation	64
4.2.3 Areas calculation and comparison	65
4.3 Fault detection study	66
4.4 Determination of fault location	68
4.5 Study of emergency feeding condition	72
4.6 Study of wrong phase coupling	74
4.7 Study of the effect of booster transformer	75
4.8 Selecting proposed distance relay settings	76

5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK	
5.1 General	81
5.2 Conclusions	81
5.3 Future work	82
REFERENCES	83-86

LIST OF TABLES

Table 1.1	Distances between substations – DC system	7
Table 4.1	Faulty subsection detection	71
Table 4.2	Booster transformer simulation cases	76
Table 4.3	Resistive fault coverage three trains	79
Table 4.4	Resistive fault coverage four trains	80

LIST OF FIGURES

Figure 1.1	Third rail system	3
Figure 1.2	Over head catenary system	3
Figure 1.3	Structure of DC feeding system	5
Figure 1.4	Rate of rise typical waveform	7
Figure 1.5	Feeding arrangement of 25kv traction system	9
Figure 1.6	Neutral section between different phases	11
Figure 1.7	AC power supply simple configuration	12
Figure 1.8	AC power supply Booster transformer configuration	13
Figure 1.9	B.T in service at the railway network in Finland	14
Figure 1.10	AC power supply Autotransformer configuration	15
Figure 1.11	Catenary A.Ts ready for service at a site in Germany	15
Figure 1.12	Over head transmission line arrangement	16
Figure 1.13	Single catenary	17
Figure 1.14	Compound catenary	17
Figure 1.15	Third rail possible arrangements	18
Figure 1.16	DC Series motor torque speed characteristics	21
Figure 2.1	Electro-mechanical distance protection relay	27
Figure 2.2	Distance relay most common characteristics	28
Figure 2.3	Trip characteristics setting of distance relay	30
Figure 2.4	Thermal protection concept	31
Figure 2.5	Instantaneous over-current relay characteristics	32
Figure 2.6	Definite time over-current relay characteristics	33
Figure 2.7	Inverse time over current relay characteristics	34

Figure 2.8	Connecting the P438 measuring circuits	36
Figure 2.9	Typical catenary strength loss	38
Figure 2.10	Tensile strength versus conductivity	39
Figure 3.1	Overall conceptual diagram	46
Figure 3.2	Substation power supply	47
Figure 3.3	AC Feeding Arrangement	48
Figure 3.4	Catenary π model	49
Figure 3.5	Relay detection algorithm	52
Figure 3.6	R-X Plane Fault at the 3 rd subsection	55
Figure 3.7	Fault Location Flowchart	56
Figure 3.8	Effect of booster transformer	59
Figure 3.9	Wrong phase coupling impedance locus	60
Figure 3.10	Frequency of occurrence of measured fault resistance	61
Figure 4.1	Actual system	63
Figure 4.2	Conceptual system modeling	63
Figure 4.3	Simulink system model	64
Figure 4.4	Impedance calculation logic	65
Figure 4.5	Area calculation / comparison logic	65
Figure 4.6	Main voltage waveform	66
Figure 4.7	Main current waveform	66
Figure 4.8	R-X plane fault F1	67
Figure 4.9	Emergency feeding condition	72
Figure 4.10	R-X Plane for emergency feeding simulation	73
Figure 4.11	Wrong phase coupling simulation	74

Figure 4.12	R-X Plane wrong phase coupling simulation	74
Figure 4.13	Booster transformer simulation	75
Figure 4.14	R-X Plane three trains	77
Figure 4.15	R-X Plane four trains	76
Figure 4.16	Settings based on Security	77
Figure 4.17	Relay setting check	78

LIST OF ABBREVIATIONS

DC Direct Current

AC Alternating Current

OHE Over Head Equipment

FP Feeding Post

SP Sectioning Post

S.S Substation

C Catenary

R Rail

F Feeder wire

B.T Booster transformer

A.T Auto transformer

C.T Current transformer

V.T Voltage transformer

BUOC Back Up Over Current

PSB Power System Block

WPC Wrong Phase Coupling

Ass Area of the subsection

A_C Calculated area

DFT Discrete Fourier Transformation