PULSE OXIMETRY IN COMPARISON TO ARTERIAL BLOOD OXYGEN SATURATION IN RESPIRATORY DISTRESS IN NEONATES

Thesis By

Marwa Mohamed Mohamed Moro

(M.B., B.Ch)

Submitted for Partial Fulfillment of the MSc Degree in Pediatrics

Under Supervision of

Dr. Samiha Samuel Wissa Doss

Professor of Pediatrics

Faculty of Medicine- Cairo University

Dr. Dalia Sayed Mosallam

Lecturer of Pediatrics
Faculty of Medicine- Cairo University

Dr. Enas Abdallah Ali

Lecturer of Pediatrics
Faculty of Medicine- Cairo University

Faculty of Medicine
Cairo University
2010

Acknowledgement

First of all I thank God for all his giving throughout my life, I thank my family for their continuous support through all the hard and difficult times.

I would like to express my deepest gratitude and thanks to **Prof. Dr. Samiha Samuel Wissa Doss** Professor of Pediatrics and Chest, Faculty of Medicine- Cairo University, who gave me the honor of working under her supervision and follow up of the progress of this work.

I wish to express my deepest thanks and gratitude to **Dr. Dalia Sayed Mosallam**, Lecturer of Pediatrics, Faculty of Medicine- Cairo University, for guiding me all through this thesis and revising all my work so I give her all my sincere thanks for her effort and time.

I wish to thank **Dr.**, **Enas Abdallah Ali**, Lecturer of Pediatrics, Faculty of Medicine- Cairo University, for her great help L, for setting the guidelines which I followed throughout this thesis, revising it and all her valuable notes and encouragement.

Dedication

To my Father and my Mother who taught me the principles and patience
To my husband who support me
To my daughters Razan and
Renad
To all my professors and colleagues

Contents

	Page
Introduction	1
Aim of the work	
Review of literature	
 Respiratory distress in neonates 	4
Pulse Oximetry	50
Arterial blood gas	78
Patients and methods	
Results	
Discussion	
Summary	
Conclusion	
Recommendations	
References	
Arabic summary	

List of tables

Table no	Title					
1	Classification on aetiology of persistant pulmonary hypertension in newborn	24				
2	Simplified summary of some of the major newborn respiratory conditions	30				
3	Degree of Respiratory Distress According to Downes' Scoring System	31				
4	Silverman Anderson retraction Score					
5	ABG Score					
6	laboratory evaluation for RD in neonates	34				
7	Guidelines for monitoring oxygen saturation levels by pulse oximetry	37				
8	Timing of surfactant administration	43				
9	Comparison with the new generation pulse oximeters	72				
10	Factors associated with change po2					
11	list of some of the causes in which (A-a)Po2 change	80				
12	Causes of changes in anion gap	81				
13	Different between arterial and venous blood gases	89				
14	Reference ranges for arterial and "arterialized" capillary blood pO2	90				
15	Descriptive data of gestational age, delivery route, maternal illness and medical history of mothers	98				
16	Descriptive data of neonates' gender and weight	101				
17	Descriptive data of neonates' weight	101				
18	Descriptive data of neonates' vital signs	102				
19	Descriptive data of ABG	102				
20	Descriptive data of SpO ₂	102				
21	Descriptive data of blood picture analysis	103				
22	Descriptive data of Down score	103				
23	Descriptive data of chest radiographic findings	103				
24	Descriptive data of diagnosis and complications	104				
25	Descriptive data of Oxygen devices	105				

26	Pearson's correlation coefficient results for the correlation between PO ₂ and SpO ₂ in the whole sample	106
27	Pearson's correlation coefficient results for the correlation between PO ₂ and SpO ₂ in neonates with RDS	106
28	Pearson's correlation coefficient results for the correlation between PO ₂ and SpO ₂ in neonates with diagnoses other than RDS	107
29	Pearson's correlation coefficient results for the correlation between SpO ₂ and different variables in the whole sample	108
30	Means, standard deviation (SD) values and results of Student's t-test for comparison between SpO ₂ in boys and girls	108
31	Means, standard deviation (SD) values and results of Student's t-test for comparison between SpO ₂ in neonates who were delivered through NVD or C.S.	108
32	Means, standard deviation (SD) values and results of Student's t-test for comparison between SpO ₂ in neonates with and without RDS	109

List of figures

		Page			
1	Curve reflects findings from lungs obtained at postmortem from an infant with hyaline membrane disease	8			
2	Schematic outlines the pathology of respiratory distress syndrome	10			
3	Chest radiograph of an infant with respiratory distress syndrome of the newborn				
4	Chest radiograph of an infant with meconium aspiration syndrome	18			
5	Chest radiograph of an infant with transient tachypnea of the newborn	21			
6	Diagnostic approach to RD	30			
7	Management of Neonatal Respiratory Distress	46			
8	Management of Deliveries with Meconium- Stained Amniotic Fluid				
9	Schematic structure of Haemoglobin	53			
10	The Oxyhaemoglobin Dissociation curve	56			
11	Sensor device	60			
12	Oxygen saturation measured via pulse oximetry	64			
13	Disposable low-pressure adhesive attachment clip for sensor placement at the ear lobe.	64			
14	A handheld pulse oximeter				
15	Typical measurement through the finger nail	65			
16	Masimo SET (signal extraction technology).				
17	The principle difference between	76			

	transmission and reflectance pulse oximetry			
18	Pie chart representing delivery route in the studied group			
19	Bar chart representing maternal illness in the studied group	99		
20	Bar chart representing mothers' medical history in the studied group	100		
21	Pie chart representing gender distribution in the studied group	101		
22	Pie chart representing CRP findings in the studied group	103		
23	Pie chart representing prevalence of RDS in the studied group	104		
24	Pie chart representing Oxygen devices used in the studied group	105		
25	Scatter diagram showing positive correlation between SpO ₂ and PO ₂ in the whole sample	109		
26	Scatter diagram showing positive correlation between SpO ₂ and PO ₂ in neonates with RDS	109		

List of Abbreviations

Abbreviation Meaning

(A-a) pO2 Alveolar-arterial oxygen gradient

A/C assist/control

ABG Arterial blood gas analysis AC pulsatile component

AGA Appropriate for gestational age

AR Arterial blood
BE The base excess

BPD bronchopulmonary dysplasia

C -XR Chest X-ray

CBC Complete blood count
CHD Congenital Heart Disease
CNS Central nervous system
CO Hb carboxyhemoglobin.

COPD Chronic obstractive lung disease
CPAP Continuous Positive Airway Pressure

CRP C_reactive protien

DC non-pulsatile components
DKA Diabetic ketoacidosis

DST Discrete Saturation Transform Algorithm

ECG Electrocardiography

FIO2 fraction of inspired oxygen FRC functional residual capacity

GBS group B streptococci GIT Gasterointestinal tract

HCO Bicarbonate

HFOV High-frequency oscillatory ventilation

HMD Hyaline Membrane Disease

HR heart rate

HRPO High resolution pulse oxietry IEM Inborn Errors of Metabolism

IPPV Intermittent positive pressure ventilation

IV Intravenous

LEDs Light emitting diodes

MAS Meconium Aspiration Syndrome

MetHb methemoglobin
NICU Intensive Care Unit
NV Nasal ventilation
O2Hb oxyhaemoglobin

PaCO2 Arterial carbon dioxide partial pressure

PCV packed cell volume

PDA patent ductus areteriosus

PO Pulse oximetry

pO2 Partial oxygen pressure

PPHTN Persistent Pulmonary Hypertension of the Newborn

PSV pressure support ventilation PTV Patient-triggered ventilation

RD Respiratory distress

RDS Respiratory distress syndrome

RHb Reduced haemoglobin or deoxyhaemoglobin

RPO Reflectance pulse oximetry RTA Renal tubular acidosis

RV Venous blood

SaO2 Arterial oxygen saturation

SD Standard deviation

SET Signal Extraction Technology

SIM synchronized intermittent mandatory ventilation

SpO2 Saturation of peripheral oxygen

TPO Traditional pulse oximety

TTN Transient Tachypnoea of the Newborn PPHN

USG ultrasonography V/Q ventilation-perfusion

ABSTRACT

OBJECTIVE. Our aim was to define the relationship of PaO2 and pulse oxygen saturation values in newborn with respiratory distress to evaluate whether pulse oxygen saturation value related to PaO2. METHODS. Prospective comparison of PaO2 and pulse oxygen saturation values in 80 patient was performed. The PaO2 measurements were obtained from blood gas analyzer; simultaneous pulse oxygen saturation values were recorded. **RESULTS**. We evaluated PaO2/ pulse oxygen saturation values in 80 neonates. Of the 80 samples, 30 (37.5 %) of cases were breathing supplemental oxygen by CPAP, 27 (33.7 %) of cases were on nasal pronge, 21 (26.3 %) were on ventilator and 2 (2.5 %) were on head A mean pulse oxygen saturation of $(90.7 \pm 7.1\%)$ and the mean box. PaO2 of (64.9 ± 15.9) mmHg. there was a statistically significant positive (direct) correlation between PO2 and SpO2. An increase in PO2 is associated with an increase in SpO2 (p<0.001). **CONCLUSIONS:** pulse oximetry measured from neonates and infants with respiratory distress syndrome shows statistically significant positive (direct) correlation with PO2.

KEY WORDS

PULSE

RESPIRATORY

ARTERIAL

INTRODUCTION

Respiratory distress syndrome (RDS) of the newborn, also known as infant RDS is an acute lung disease present at birth. It is a syndrome caused in preterm infant by developmental insufficiency of surfactant production and structural immaturity in the lung. It can also result from a genetic problem with the production of surfactant associated proteins. RDS affects about 1% of newborn infants and is the leading cause of death in preterm infants. The incidence decreases with advancing gestational age (*Rodriguez et al.*, 2002).

High-risk infants require prompt attention by a neonatal resuscitation team (*Cole*, 2006).

Despite greatly improved RDS treatment in recent years, many controversies still exist. Neonates are given warm, moist oxygen. This is critically important, but needs to be given carefully to reduce the side effects associated with too much oxygen (*Courtney*, 2007).

Pulse oximetry is a non invasive, medical device that indirectly measures the oxygen saturation of a patient's blood, it is often attached to a medical monitor so staff can see a patient's oxygenation at all times. Most monitors also display the heart rate. Portable, battery-operated pulse oximeters are also available for home blood-oxygen monitoring (*Brand et al.*, 2002).

Pulse oximetry is not invasive, easy to use, has no side effects, is accurate and allows continuous monitoring and is the preferred method of oxygen monitoring in neonates (*Mower et al.*, 1997).

An arterial blood gas (ABG) is a blood test that is performed using blood from an artery. ABG testing is used to determine the pH of the blood, the partial pressure of carbon dioxide and oxygen(PaO₂), and the bicarbonate level (*Baillie*, 2008).

Portable pulse oximeters are now widely available for the assessment of arterial oxygenation, and the United State Medicare Program considers saturation readings to be acceptable substitutes for arterial PO₂ in selecting patients for long-term oxygen therapy. Current oximeters are reasonably accurate (plus or minus 4 or 5 percent of the co-oximetry value) in assessing patients for desaturation during exercise, for sleep studies, and for in-home monitoring (*Pierson*, 2007).

AIM OF THE WORK

Our aim was to define the relationship of PaO₂ and pulse oxygen saturation values during routine clinical practice.