The Role of Measurement of Maternal Serum C-Reactive Protein, Fibrinogen and Serum Ferritin in Assessment of The Severity of Preeclampsia

Thesis

Submitted for partial fulfillment of Master Degree In Obstetrics and Gynecology

Presented by

Marwa Abd El Mawla Mohammad

M.B., B. CH.(2003)
Ain Shams Faculty of Medicine
Resident of Obstetrics and Gynecology
Ain Shams University Maternity Hospital

Supervised by

Prof. Mohammad Ashraf Mohammad Farouk Kortam

Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Dr. Mohammad Mahmoud Al Sherbeeny

Lecturer of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Prof. Hanaa Ahmed Amer

Professor of clinical pathology Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2009

ACKNOWLEDGEMENT

First and above of all, thanks to the merciful ALLAH for helping me finish this work, and for the great countless gifts I have been offered throughout my life, then my family; my father, my mother and my sisters for their continuous encouragement, support and praying that lights my way throughout my life.

It is a great honor to express my sincere thanks, deep gratitude and appreciation to Prof. Dr. Mohammad Ashraf Mohammad Farouk Kortam Professor of Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University for his encouragement, creative suggestions, fatherhood and whole hearted support, both scientific and moral and for his valuable guidance throughout this work.

I would like to express my sincere appreciation to Prof. Dr. Hanaa Ahmed Amer Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University for her kind encouragement and great help in performing this study.

My words fail to express my sincere thanks and deep gratitude to Dr. Mohammad Mahmoud Al Sherbeeny Lecturer of Obstetrics & Gynecology, Faculty of Medicine, Ain Shams University for his energetic help spending long hours in careful review of this work following its details with constructive advice and criticism.

Finally, I can never forget to express the profound thanks and appreciation to all my friends who helped me with special thanks to my colleague Amr Sakr, for his great effort and support he offered in performing this work.

Marwa Abd ElMawla Moahmmed

List of appreviations

PE: preeclampsia

NHBPEP: National High Blood Pressure Program

CRP: C-reactive protein

IL: Interleukin

TNF: Tumor Necrosis Factor

PIH: Pregnancy Induced Hypertension

MAP: Mean Arterial Pressure

ACOG: College of Obstetricians and Gynecologists

IUGR: Intra Uterine Growth Restriction

BMI: Body Mass Index

SD: Stander Deviation

GA: Gestation Age

MPET: Mild Preeclampsia

SPET: Severe Preeclampsia

LDL: low-Density Lipoprotein

HDL: High-Density Lipoprotein

NOS: Nitric Oxide Synthetase

PAF: Platelet Activating Factor

PECAM-1: Platelet Endothelial Cell Adhesion Molecule-I

NK: Natural Killer

AT: Angiotesin

PA: Plsminogen Activator

HCG: Human Chorionic Goanadotrophin

HPL: Human Placental Lactogen

HLA: Human Leucocytic Antigen

SGOT: Serum Glutamic-Oxaloacetic Transaminase

SGPT: Serum Glutamic-Pyruvic Transaminase

LDH: Lactic Dehydrogenase

FP: Fibrinopeptides

Fg: Fibrinogen

HMW-Fg: High Molecular Weight Fibrinogen

LMW-Fg: Low Molecular Weight Fibrinogen

VLMW: Very Low Molecular Weight Fibrinogen

List of Tables

Table	Page
Table 1:	Indications of severity of hypertensive disorders during pregnancy
Table 2:	Comparison between controls and pre- eclamptic patients as regarding demographic criteria
Table 3:	Comparison between controls and pre- eclamptic patients regarding blood pressure72
Table 4:	Comparison between controls and pre- eclamptic patients regarding CRP74
Table 5:	Comparison between controls and pre- eclamptic patients regarding mean plasma fibrinogen level
Table 6:	Comparison between controls and pre- eclamptic patients regarding mean serum ferritin levels
Table 7:	Correlation between CRP and plasma fibrinogen in the control group80
Table 8:	Correlation between CRP and serum ferritin in the control group82
Table 9:	Correlation between plasma fibrinogen and serum ferritin in the control group84

Table 10:	Correlation between CRP and plasma fibrinogen in mild preeclampsia group86
Table 11:	Correlation between CRP and serum ferritin in mild preeclampsia group88
Table 12:	Correlation between plasma fibrinogen and serum ferritin in mild preeclampsia group90
Table 13:	Correlation between CRP and plasma fibrinogen in severe preeclampsia group92
Table 14:	Correlation between CRP and serum ferritin in severe preeclampsia group94
Table 15:	Correlation between plasma fibrinogen and serum ferritin in severe preeclampsia group96
Table 16:	Correlation between the studied parameters and mean arterial blood pressure (MAP) in the control group
Table 17:	Correlation between the studied parameters and mean arterial blood pressure (MAP) in mild preeclampsia group102
Table 18:	Correlation between the studied parameters and mean arterial blood pressure (MAP) in severe preeclampsia group

List of Figures

Figure	Page
Figure 1:	Model for pathogenesis of preeclampsia26
Figure 2:	Three-dimensional structure of human C-Reactive Protein (CRP)
Figure 3:	Part of a 24-snbunit model of a ferritin molecule showing iron-core crystalline adhering in random orientations to the inner protein surface
Figure 4:	Comparison between controls and pre- eclamptic patients as regard the age69
Figure 5:	Comparison between controls and pre- eclamptic patients as regard the gestational age
Figure 6:	Comparison between controls and pre- eclamptic patients as regard the BMI71
Figure 7:	Comparison between controls and pre- eclamptic patients as regard blood pressure73
Figure 8:	Comparison between the study groups as regard mean CRP levels
Figure 9:	Comparison between the study groups as regard mean plasma fibringen levels

Figure 10:	Comparison between the study groups as regard mean serum ferritin levels79
Figure 11:	Correlation between CRP and plasma fibrinogen in the control group81
Figure 12:	Correlation between CRP and serum ferritin in the control group
Figure 13:	Correlation between plasma fibrinogen and serum ferritin in the control group85
Figure 14:	Correlation between CRP and plasma fibrinogen in mild preeclampsia group87
Figure 15:	Correlation between CRP and serum ferritin in mild preeclampsia group
Figure 16:	Correlation between plasma fibrinogen and serum ferritin in mild preeclampsia group91
Figure 17:	Correlation between CRP and plasma fibrinogen in severe preeclampsia group93
C	Correlation between CRP and serum ferritin in severe preeclampsia group95
Figure 19:	Correlation between plasma fibrinogen and serum ferritin in severe preeclampsia group 97
Figure 20:	Correlation between CRP levels and MAP in the control group

Figure 21:	Correlation between plasma fibrinogen levels and MAP in the control group100
Figure 22:	Correlation between serum ferritin levels and MAP in the control group101
Figure 23:	Correlation between CRP levels and MAP in mild preeclampsia group
Figure 24:	Correlation between plasma fibrinogen levels and MAP in mild preeclampsia group104
Figure 25:	Correlation between serum ferritin levels and MAP in mild preeclampsia group
Figure 26:	Correlation between CRP levels and MAP in severe preeclampsia group107
Figure 27:	Correlation between plasma fibrinogen levels and MAP in severe preeclampsia group
Figure 28:	Correlation between serum ferritin levels and MAP in severe preeclampsia group

List of Contents

Page		
Introduction 1		
Aim of the Work3		
Review of Literature:		
o Chapter (1): Preeclampsia4		
o Chapter (2): C-reactive protein 34		
o Chapter (3): Fibrinogen		
o Chapter (4): Ferritin 50		
Patients and Methods59		
Results 67		
Discussion110		
Conclusion and Recommendations118		
Summary119		
References		
Arabic Summary		

INTRODUCTION

Pre-eclampsia (**PE**), the disorder, almost 2000 years ago, was called eclampsia reflecting the description given by Celsus as pregnant women with seizures that abated with delivery. In late 1800s, the increased blood pressure and urinary protein were noted to antedate the seizures (*Chesley*, 1978). So the term preeclampsia was introduced as "prae" means in Latin "before", Eclampsia comes from the Greek word "ek" means "out" and "lampein" means "to flash". Thus preeclampsia means "before flashing out" (*www.MedFriendly.com: Preeclampsia.htm*)

Pre-eclampsia (PE), is a leading cause of maternal and fetal morbidity and mortality (Sibai et al., 1993 and De Swiet, 2000). It is usually defined as the onset of hypertension and proteinuria after 20 weeks of gestation in previously normotensive non-proteinuric pregnant women (National High Blood Pressure Program (NHBPEP), 2000). If left untreated, PE can progress to a convulsive state known as eclampsia (Mahmoudi et al., 1999). In the Western world, it affects between 2 and 7% of all pregnancies, but the incidence in other geographic areas with different ethnic or social

characteristics can be up to three times greater (*Sibai*, 2003). A worldwide incidence of 8,370,000 cases per year has been estimated (*Villar et al.*, 2003 and Sibai, 2003). In developing countries, 42% of maternal deaths are attributed to this disorder, which is also the major reason for preterm delivery (*Lòpez-Jaramillo et al.*, 2001).

According to Redman and colleagues, some diseases in pregnancy, and especially PE, are part of a more generalized intravascular inflammatory reaction (*Redman et al.*, 1999).

This systemic inflammatory response involves both the immune system and the clotting and fibrinolytic systems (*Rangel-Fruasto et al., 1995*). Mediators of such inflammatory response are altered in women with PE, including increased C-reactive protein (CRP) (*Teran et al., 2001*). Also, there were studies evaluating fibrinogen in PE (*Pepple et al., 2001 and Belo et al., 2002*). However, little is known about whether or not there is a correlation with the severity of the disease (*Ustun et al., 2005*).

C-reactive protein (CRP), being a sensitive marker of tissue damage and inflammation, can be a potential marker for the inflammatory response characteristic of PE. The hepatic synthesis of CRP increases in response to inflammatory

cytokines such as IL-1, IL-6, and TNF- α , which are responsible for inflammatory response and maternal endothelial activation in PE. Conflicting data have been published regarding the predictive role of CRP in pregnant women for transient hypertension and PE. (*Tjoa et al.*, 2003 and *Qiu et al.* 2004).

Fibrinogen is an important acute phase reactant, which might therefore correlate with PE and its severity (*Frishman*. 1998 and Redman et al., 1999). The relationship between the levels of fibrinogen and PE has also been studied, but there were conflicting reports on fibrinogen levels (*Ustun et al.*, 2005).

Serum ferritin is elevated in a variety of conditions associated with non-utilization of iron and destruction of tissues such as in hemolytic anemia, hepatic damage, inflammation and neoplasm (*Prieto. 1975*). Subclinical hepatic damage is known to occur in pregnancy induced hypertension (PIH) and eclampsia and this is reflected by elevated liver enzymes (*Killman et al., 1975*). The hepatic damage may result in the leakage of ferritin into the circulation resulting in hyperferritinemia, more so in eclampsia duo to the acute damage (*Raman et al., 1992*).

Aim of the work

The aim of this work was to establish whether a single measurement of maternal serum C- reactive protein (CRP), fibrinogen and/or serum ferritin had a correlation with the severity of the disease in patients presented with preeclampsia in the third trimester of pregnancy using mean arterial pressure (MAP) as an indicator of the severity of the disease.

PREECLAMPSIA

Introduction:

Preeclampsia is a pregnancy-specific hypertensive disorder that usually occurs after 20 weeks of gestation but can occur earlier with fetal hydrops or hydatiform-mole, preeclampsia this is unlike gestational hypertension in which there is associated proteinuria and edema (*Decherney et al.*, 2003).

Definition:

Preeclampsia is defined, according to the National High Blood Pressure Education Program Working Group, as a syndrome consisting of hypertension and proteinuria that may be also associated with myriad other signs and symptoms, such as edema, visual disturbances, headache and epigastric pain (*NHBPEP*, 2000).

Hypertension is defined as persistent blood pressure elevation to 140 mmHg systolic or greater, or 90 mmHg diastolic or greater on two occasions > 6 hours apart. Significant proteinuria is defined as more than 0.3 gm a 24-hour urine collection or 0.1 gm/L (more than 2+ on the dipstick) in at least two random samples collected 6 hours or