The Effect of Recently Introduced Rotary Nickel Titanium Root Canal System on the Canal Centering Ability and Apical Transportation (Invitro Study)

Thesis

Submitted to the faculty of dentistry Ain Shams University

For

Partial Fulfillment of the requirements of the master degree In

(Endodontics)

By
Esraa Elsayed Desouky
B.D.S
Faculty of Dentistry
Ain Shams University, 2000

Suppervisors

Professor Dr. Salma Hassan Elashry
Professor of Endodontics
Faculty of dentistry
Ain Shams University

Associate Professor Dr. Ahmed Abdel Rahman Hashem
Associate Professor of Endodontics
Faculty of dentistry
Ain Shams University

List of Tables

<u>Table</u>	<u>page</u>
Table (1):	The means, standard deviation (SD) Values and results of Mann Whitney U test for the comparison between mean canal transportation of the two systems (Curvature below 20°) MD and BL
Table (2)): The means, standard deviation (SD) values and results of Mann Whitney U test for the comparison between mean canal transportation of the two systems (Curvature between 35-45)
Table (3)): The means, standard deviation (SD) values and results of Mann Whitney U test for the comparison between mean canal transportation of the two curvatures (Protaper)
Table (4)	The means, standard deviation (SD) values and results of Mann Whitney U test for the comparison between mean canal transportation of the two curvatures (NRT)62
Table (5): The means, standard deviation (SD) values, results of Kruskal Wallis and Mann Whitney U test for the comparison between mean canal transportation of the four groups
Table (6	The means, standard deviation (SD) values, results of Kruskal Wallis and Mann Whitney U test for the comparison between mean canal transportation of the different cut levels

Table (7): The means, standard deviation (SD) values an Student's t-test for the comparison between mea	
of the two systems	76
Table (8): The means, standard deviation (SD) values an Student's t-test for the comparison between mea of the two curvatures	n AT index
Table (9): The means, standard deviation (SD) values, resu ANOVA and Duncan's tests for the comparison by	
mean AT index of the four groups	

List of figures

<u>Figure</u> <u>page</u>	-
Figure (1): Photograph for NRT rotary Ni-Ti file set4	6
Figure (2): Photograph for Protaper rotary Ni-Ti file set4	6
Figure (3): Diagrammatic representation of Schnieder's method for measurement of canal curvature4	7
Figure (4): Photograph for teeth that were fixed in silicon based impression material	48
Figure (5): Representative drawing of tooth sections showing how canal centering was measured4	.9
Figure (6): Preinstrumentation CT scans for group I with curvature below 20 at 6mm cut level	19
Figure (7): Photograph of the device used to measure apical transportation	0
Figure (8): The Caliber used to access the apical Transportation	0
Figure (9): Diagrammatic representation for measurement of AT index	1
Figure (10): The mean values and results of Mann Whitney U test for the comparison between mean canal transportation of the two systems (Curvature below 20°) at mesiodistal direction	
Figure (11): The mean values and results of Mann Whitney U test for the comparison between mean canal transportation of the	

	two systems (Curvature below 20°) at buccolingual direction
Figure (12):	The mean values and results of Mann Whitney U test for the comparison between mean canal transportation of the two systems (Curvature between 35 - 45°) at mesiodistal direction
Figure (13):	The mean values and results of Mann Whitney U test for the comparison between mean canal transportation of the two systems (Curvature between 35 - 45°) Buccolingual direction
Figure (14):	The mean values and results of Mann Whitney U test for the comparison between mean canal transportation of the two curvatures (Protaper) at the mesiodistal direction
Figure (15):	The mean values and results of Mann Whitney U test for the comparison between mean canal transportation of the two curvatures (Protaper) at the buccolingual direction
Figure (16):	The mean values and results of Mann Whitney U test for the comparison between mean canal transportation of the two curvatures (NRT) at the mesiodistal direction
Figure (17):	The mean values and results of Mann Whitney U test for the comparison between mean canal transportation of the two curvatures (NRT) at the buccolingual direction
Figure (18):	The mean values, results of Kruskal Wallis and Mann Whitney U test for the comparison between mean canal transportation of the four groups: at MD direction65

Figure (19):	The mean values, results of Kruskal Wallis and Mann Whitney U test for the comparison between mean canal transportation of the four groups: at BL direction66
Figure (20):	The mean values, results of Kruskal Wallis and Mann Whitney U test for the comparison between mean canal transportation of the different cut levels: at MB and BL directions.(Protaper curvature below20)69
Figure (21):	The mean values, results of Kruskal Wallis and Mann Whitney U test for the comparison between mean canal transportation of the different cut levels: at MB and BL directions.(Protaper curvature between 35-45)69
Figure (22):	The mean values, results of Kruskal Wallis and Mann Whitney U test for the comparison between mean canal transportation of the different cut levels: at MB and BL directions.(NRT curvature below 20)70
Figure (23):	The mean values, results of Kruskal Wallis and Mann Whitney U test for the comparison between mean canal transportation of the different cut levels: at MB and BL directions.(NRT curvature between 35-45)70
Figure (24):	Preinstrumentation CT scans for group I with curvature below 20 at 6mm cut leve
Figure (25):	Preinstrumentation CT scans for group I with curvature between 35-45 at 6mm cut level71
Figure (26):	Postinstrumentation CT scans for group I with curvature below 20 at 6mm cut level72
Figure (27):	Postinstrumentation CT scans for group I with curvature between 35-45 at 6mm cut level72

Figure (28):	Preinstrumentation CT scans for group II with curvature below 20 at 6mm cut level
Figure (29):	Preinstrumentation CT scans for group II with curvature between 35-45 at 6mm cut level73
Figure (30):	Postinstrumentation CT scans for group II with curvature below 20 at 6mm cut level74
Figure (31):	Postinstrumentation CT scans for group II with curvature between 35-45 at 6mm cut level74
Figure (32):	the mean values and results of Student's t-test for the comparison between mean AT index of the two systems
Figure (33):	the mean values and results of Student's t-test for the comparison between mean AT index of the two curvatures
Figure (34)	the mean values, results of ANOVA and Duncan's tests for the comparison between mean AT index of the four groups
	Preinstrumentation radiograph for samples for group I with curvature below 2080
Figure (36):	Postinstrumentation radiograph for samples for group I with curvature below 2080
•	Preinstrumentation radiograph for samples for group I with curvature between 35-4581
•	Postinstrumentation radiograph for samples for group I with curvature between 35-4581

· /	Preinstrumentation radiograph for samples for group II with curvature below 2082
• , ,	Postinstrumentation radiograph for samples for group II with curvature below 20
• ,	Preinstrumentation radiograph for samples for group II with curvature between 35-4583
• , ,	Postinstrumentation radiograph for samples for group II with curvature between 35-4583

Contents

<u>page</u>

Introduction	1
Review of Literature	3
Aim of the study	36
Materials and Methods	37
Results	52
Discussion	84
Summary and Conclusions	93
References	96

Cleaning and shaping of the root canal system is an important objective of root canal therapy to receive three dimensional obturation. Maintaining the original path of the canal is also important and is more of a challenge in small curved canals, which present bends and curves that may not be apparent on a conventional radiograph.

The shaping of curved canals presents a considerable problem for practitioners when stainless steel instruments are used. There is a tendency for all preparation techniques to transport the prepared canals from its original axis. Deviation from its original curvature can lead to procedural errors, such as ledge formation, zipping, stripping and perforation. As a consequence, new endodontic instruments and techniques have been introduced with help to minimize these risks.

Nickel titanium instruments were first introduced in endodontics to overcome the limitations of stainless steel instruments and make the preparation of curved canals much easier. Ni- Ti alloy is non magnetic, self resisting and water proof when this alloy is subjected to stress and upon release of this stress, the structure reverts back to its original case.

During the last ten years, scientific evidence has clearly shown that rotary Ni- Ti instrument used in a crown down fashion produced constant canal shape, less debris extrusion and stay well centered inside the root canal, despite these advantages however, clinical experience has underlined some deficiencies of the current systems and a real need to increase flexibility in larger size and tapers, increase cutting efficiency, better safety in use and enhanced user with fewer instruments and simpler sequences. For these reasons there are new rotary Ni-Ti instruments that are discovered to overcome these needs.

Although nickel titanium endodontic rotary instruments do overcome the shortcomings associated with stainless steel instruments such as canal transportation and excessive dentin removal, we must know the fact that although these instruments are flexible, they will eventually fatigue when become overstressed. And so a need to introduce recent rotary nickel titanium systems to overcome the shortage of the old systems was a must.

Any new root canal instrument should be evaluated regarding its physical and mechanical properties, and most importantly its effect upon root canal shape and path.

Nickel titanium rotary instruments have become very popular for endodontic treatment because their much lower elastic modulus, compared with stainless steel, enables these instruments to negotiate curved root canals with considerably lower likelihood for failure. Nickel titanium rotary files keep tile original path of root canals with minimal deviation and have more ability to clean the canals with less risk from canal transportation, perforation and zipping.

Glosson et al ⁽¹⁾ compared Ni Ti hand instrument, Ni Ti engine driven and K flexo files used in root canal preparation using modified Bramante technique and new digital subtraction software, they used 60 mesial canals of extracted lower six and divided them into five random groups, A, B, C, D and E. they were instrumented by k-flex files, Ni-Ti hand files, NT sensor engine driven files, Ni-Ti canal master "U" hand instrument and Ni-Ti light speed engine driven respectively. Results showed that canals that were instrumented by Canal Master "U" hand instrument and Ni-Ti engine driven (light speed and NT sensor files) showed less canal transportation (p<0.05), remained more centered in the canal removed less dentin and produced rounder canal preparation than K flex and Mity files. Engine instrumentation using lightspeed and NT sensor file was significantly faster than hand instrument.

Zakariasen et al. (2) compared quality preparation and time using three different filing protocols. Sixty teeth were used in this study: Twenty, 30 degrees canals in acrylic blocks were prepared by hand instrumentation using stainless steel K-files and Gate-Glidden burs, 20 by using the M-4 handpiece (Kerr) and radical taper Ni-Ti files and 20 using the Profile (PF) System. Two different clinicians each prepared 10 blocks using each protocol and the quality was assessed blindly by 2 other clinicians. Results showed that: Hand instrumentation required the most time and generated the greatest number of procedural errors (transportation, elbowing, ledging). The protocol employing RTF took less time, generated an excellent preflare, but caused some procedural errors though much less than hand filing. The PF System required the least amount of time and generated the fewest procedural errors. The results of this study indicate that the quality and efficiency of canal preparation can be greatly enhanced through the use of engine driven Ni-Ti files.

Short et al (3) compared the canal centering ability of four instrumentation techniques. Mesial roots of mature lower first molars with separate canals were paired on basis of curvature and morphology. Canal lengths were standardized to 11 mm. Profile, Lightspeed, McXIM and Flex-R hand filing techniques respectively were randomly

assigned to one of the four canals of each tooth pair. The roots were mounted and sectioned at 1 mm, 3 mm, and 5 mm from working length using the modified Baramante technique. All sections were video-imaged preoperatively, after instrumentation to size 30 file and after final instrumentation to size 40 file. The images were computer analyzed for changes in canal area and centering. The Ni-Ti systems remained well centered in the canal than stainless steel hand files. The use of Profiles resulted in significantly greater canal area at the middle and coronal levels at size 30.

Coleman and Svec (4) compared step back preparations in curved canals of resin blocks using nickel titanium k-files and stainless steel k- files. Forty canals in resin blocks were cross sectioned at three levels: one to two mm from the apical foramen, middle of the curve, and coronal. Direct digital computer images were recorded before and after instrumentation. Superimposition of the images combined with digital subtraction software allowed direct measurement of area instrumented, distance of transportation and shape analysis. Results showed NiTi files to cause significantly less transportation and remain more centered at the apical level of the canal.