STUDIES ON FUNCTIONAL FOODS RICH IN DIETARY FIBERS

By

MAHMOUD ABD ALHAMED ELWAKEEL

B.Sc. Agric. Sc. (Food Science), Ain Shams University, 2002 M.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 2007

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Science (Food Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

2011

Approval Sheet

STUDIES ON FUNCTIONAL FOODS RICH IN DIETARY FIBERS

By

MAHMOUD ABD ALHAMED ELWAKEEL

B.Sc. Agric. Sc. (Food Science), Ain Shams University, 2002 M.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 2007

This thesis for Ph.D. degree has been approved by:

Dr .Said Salama Ibrahim Prof. Emeritus of Food Science, Faculty of Hotel and Tourism, Suez Canal University Dr .Magda Habeb Allam Prof. of Food Science, Faculty of Agriculture, Ain Shams University Dr .Alaa Abd Elrashid Mohamed Prof. of Food Science, Faculty of Agriculture, Ain Shams University Dr .Ibrahim Mohamed Hassan Prof. of Food Science, Faculty of Agriculture, Ain Shams University

Date of Examination: 10/7/2011

STUDIES ON FUNCTIONAL FOODS RICH IN DIETARY FIBERS

By

MAHMOUD ABD ALHAMED ELWAKEEL

B.Sc. Agric. Sc. (Food Science), Ain Shams University, 2002 M.Sc. Agric. Sc. (Food Science and Technology), Ain Shams University, 2007

Under the supervision of:

Dr. Ibrahim Mohamed Hassan

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Alaa Abd Elrashid Mohamed

Prof. of Food Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University.

Dr. Azaa Ahmed Bakry

Research Head of Food Science and Technology, Food Technology Research Institute , Agricultural Research Center , Ministry of Agriculture and Land Reclamation .

دراسات على الأغذية الوظيفية الغنية بالألياف الغذائية

رسالة مقدمة من

محمود عبد الحميد محمود الوكيل

بكالوريوس علوم زراعية (صناعات غذائية), جامعة عين شمس ، 2002 ماجستير علوم زراعية (علوم وتكنولوجيا الأغذية), جامعة عين شمس ,2007

للحصول على درجة دكتور فلسفة في العلوم الزراعية (علوم وتكنولوجيا الأغذية)

قسم علوم الأغذية كلية الزراعة جامعة عين شمس

صفحة الموافقة على الرسالة

دراسات على الأغذية الوظيفية الغنية بالألياف الغذائية

رسالة مقدمة من

محمود عبد الحميد محمود الوكيل

بكالوريوس علوم زراعية (صناعات غذائية), جامعة عين شمس ، 2002 ماجستير علوم زراعية (علوم وتكنولوجيا الأغذية) , جامعة عين شمس ، 2007

للحصول على درجة دكتور فلسفة في العلوم الزراعية (علوم وتكنولوجيا الأغذية)

وقد تمت مناقشة الرسالة والموافقة عليها

د. سعيد سلامة إبراهيم

أستاذ علوم الأغذية المتفرغ ، كلية السياحة والفنادق ، جامعة قناة السويس

د. ماجده حبيب علام

أستاذ علوم وتكنولوجيا الأغذية ، كلية الزراعة ، جامعة عين شمس

د. علاء عبد الرشيد محمد

أستاذ علوم وتكنولوجيا الأغذية، كلية الزراعة ، جامعة عين شمس

د. إبراهيم محمد حسن

د. إبراهيم محمد حسن

أستاذ علوم وتكنولوجيا الأغذية ، كلية الزراعة ، جامعة عين شمس

تاريخ المناقشة: 10 / 7 / 2011

جامعة عين شمس كلية الزراعة

رسالة دكتوراه

اسم الطالب : محمود عبد الحميد الوكيل

عنوان الرسالة : دراسات على الأغذية الوظيفية الغنية بالألياف الغذائية

اسم الدرجة : دكتور فلسفة في العلوم الزراعية (علوم وتكنولوجيا

الأغذية)

لجنة الإشراف

د. إبراهيم محمد حسن

أستاذ علوم وتكنولوجيا الأغذية ، قسم علوم الأغذية، كلية الزراعة، جامعة عين شمس. (المشرف الرئيسي)

د. علاء عبد الرشيد محمد

أستاذ علوم وتكنولوجيا الأغذية ، قسم علوم الأغذية، كلية الزراعة، جامعة عين شمس. د. عزه أحمد بكرى

رئيس بحوث ، معهد بحوث تكنولوجيا الأغذية ، مركز البحوث الزراعية.

تاريخ التسجيل: 11 / 2008/

الدراسات العليا

ختم الإجازة أجيزت الرسالة بتاريخ 2011 / 7 / 10

موافقة مجلس الكلية موافقة مجلس الجامعة (2011 / / 2011 / / 2011

ABSTRACT

Mahmoud Abd Alhamed Elwakeel: Studies on Functional Foods Rich In Dietary Fibers. Unpublished Ph.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2011.

Dietary fiber promoted several beneficial metabolic and physiological effects in human. Therefore, the present study was carried out to use plant sources rich in dietary fiber from pumpkin (P_k) , cauliflower (C_f) , doum (D) and psyllium husks (P_s) in bread making and to utilize them in diets fed to experimental rats. The physicochemical and functional properties of these plant sources rich in dietary fiber were also determined. Crude fiber of these plants ranged between 6.7 (P_s) as a minimum ratio to 16.1% (P_k) as maximum. On the other hand, the same samples had either very low levels of fat being 0.01 and 0.43 % in $P_{\boldsymbol{s}}$ and D , respectively , or relatively higher fat level being 2.03 and 4.09% in P_k and $C_{\mathbf{f}}\,$, respectively . Cf is worthy of consideration as an important vegetable source of protein being 21.72% on dry matter basis (DMB). As regard to the three dietary fiber fractions celluloses, hemicelluloses and lignin, they constitute about 66.4, 0.5 and 14.5% from total dietary fiber (TDF) in P_k ; 46.6, 3.6 and 2.8% in C_f as well as 35.4, 17.5 and 28.1% in D; 7.3, 54.7 and 0.5 % in P_s , respectively. All plants used in the present investigation as a source of dietary fibers contained relatively large amounts of both K (247:606 mg/100 g DMB) and Fe (79:116 mg/100 g DMB). However Na, in (C_f) , Ca in $(P_k \text{ and } P_s)$ and Mg in (D) were also found in relatively large quantities. Particle size and degree of fineness, particle density, the loose bulk density and tapped bulk density as well as water holding capacity, swelling capacity, water adsorption, fat ab sorption capacity, wettability and least gelation concentration were also studied . Assignments of functional groups by the Furrier Transform Infrared (FTIR) Spectrum Technique of P_k , C_f , D and $P_{\boldsymbol{s}}$ were investigated in details . Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) of the P_k , C_f , D, and $P_{\boldsymbol{s}}$ samples were carried out . Bread was baked from tested wheat flour supplemented with P_k , C_f , D and $P_{\boldsymbol{s}}$ powders at 2.5 , 5, 7.5 and 10 % were made and both dough and bread properties as well as the sensory attributes were tested .

Significant gradual increase in body weight at different rates of albino rats fed different diets was attained. Rats maintained on cholesterol-free diets showed lower concentrations of total cholesterol and LDL as well as atherogenic index in their serum followed by those fed diets contained either 10 or 20% psyllium husks. As regard to hypercholesterolemic rat groups their aorta showed diffuse vacuolization in the media. In contrast, hypercholesterolemic diets supplemented with 10 or 20 % psyllium husks powder did not show any histopathological alterations in rats aorta after 30 days . Experimental animals of dietary-induced hypercholesterolemia suffered from symptoms of diseased heart. After 60 days hypercholesterolaemic rats fed diets supplemented with 10 or 20% doum as well as 10 and 20 % psyllium husks showed recovered hearts. Most groups fed on dietary fibers for 30 days showed focal gliosis in the cerebrum of the brain.

Key words: Dietary Fiber; Pumpkin; Cauliflower; Doum; Psyllium Husks; Physical properties; Thermal properties; Total Cholesterol; Hypercholesterolemic; Atherogenic Index.

CONTENTS

	Page
LIST OF TABLES	VI
LIST OF FIGURES	VIII
LIST OF ABBREVIATIONS	XII
1.INTRODUCTION	1
2.REVIEW OF LITERATURE	5
2.1. Functional food .	5
2.1.1. Origin of the functional food concept .	6
2.1.2. Functional foods: defining the concept .	7
2.1.3. Functional food science.	10
2.1.4. Food technology and its impact on functional food	11
development .	
2.1.5. Types of functional foods .	14
2.1.5.1.Dietary supplements .	14
2.1.5.2. Fortified foods.	16
2.1.5.3. Enriched foods .	17
2.1.5.4. Altered products .	18
2.1.5.5. Enhanced commodities .	19
2.1.6. Strategy for development .	19
2.1.7. Prebiotics: are they functional food ingredients?	20
2.1.8. Foods for special dietary uses .	22
2.1.9. Dietary fiber is a functional food component .	26
2.2. Dietary Fiber .	26
2.2.1. Dietary fiber composition.	28
2.2.1.1. Insoluble dietary fiber.	28
2.2.1.2. Soluble dietary fiber .	29
2.2.2. Physiochemical properties of dietary fiber .	30
2.2.3. Health benefits of dietary fiber.	31
2.2.4. Mechanisms of fiber's hypolipidemic action .	35
2.2.5. Bile acid sequestering.	36

2.2.6. Effects of fiber on blood pressure .	37
2.2.7. Effects of fiber on glucose tolerance and insulin sensitivity.	38
2.2.8. Effect Fiber on weight loss.	39
2.2.9. Viscous dietary fiber .	41
2.2.9.1. Metabolic effects.	42
2.3. Sources of dietary fibers used in the present investigation .	44
2.3.1. Pumpkin .	45
2.3.2. Cauliflower.	49
2.3.3. Doum .	51
2.3.4. Psyllium .	54
2.3.4.1. History and natural source of psyllium.	54
2.3.4.2. Chemical composition and structures .	55
2.3.4.3. Cholesterol lowering effect.	55
2.3.4.4. Cancer prevention .	64
2.2.4.5. Food products fortified with psyllium.	66
3. MATERIALS AND METHODS.	68
3.1. Materials .	68
3.2. Methods.	68
3.2.1. Proximate analysis .	68
3.2.2. Dietary fiber content .	69
3.2.3. Minerals analysis .	69
3.2.4. Physical properties .	69
3.2.4.1. Bulk density .	69
3.2.4.2. Particle density .	69
3.2.4.3. Gelation properties .	70
3.2.4.4. Water adsorption .	70
3.2.4.5. Wettability.	70
3.2.4.6. Particle size distribution .	71
3.2.4.7. Rheological properties .	71
3.2.4.8. Water holding capacity (WHC).	71
3.2.4.9. Swelling capacity (SWC).	72
3.2.4.10. Fat absorption capacity (FAC).	72

3.2.5. Instrumental analysis.	72
3.2.5.1. Infrared spectrum .	72
3.2.5.2. Electron Microscopy Scan .	72
3.2.6. Thermal Analysis .	73
3.2.6.1. Differential scanning calorimetry (DSC).	73
3.2.6.2. Thermo-gravimetric analysis (TGA).	73
3.2.7. Rhelogical properties of dough.	73
3.2.7.1. Alveograph tests.	73
3.2.7.2. Mixolab tests .	74
3.2.7.3. Baking properties.	75
3.2.7.3.1. Process of pan bread.	75
3.2.7.3.2. Measurements of pan bread .	75
3.2.7.3.3. Sensory evaluation .	75
3.2.8. Biological experiment .	76
3.2.8.1. Animals and Diets .	76
3.2.8.2. Analytical methods of serum .	77
3.2.8.3. Histopathology of colon , aorta , heart and brain .	78
3.2.9. Statistical analysis .	78
4. RESULTS AND DISCUSSION	79
4.1. Physicochemical properties of tested samples .	79
4.1.1. Chemical composition of pumpkin and cauliflower as well as doum and psyllium husks, powders.	79
4.1.2. Fiber analysis of pumpkin , cauliflower , doum and psyllium husks powders .	80
4.1.3. Mineral composition .	83
4.2. Physical properties .	86
4.2.1. Particle Size and degree of fineness.	86
4.2.1.1. Particle size.	86
4.2.1.2. Levels and degree of fineness.	88
4.2.2. Density of the tested sample.	93
4.2.2.1. Particle density.	93
4.2.2.2. The loose bulk density and tapped bulk density.	93

4.2.3. Scanning electron micrographs of pumpkin, cauliflower, doum and psyllium husks powders	93
4.2.4. Water holding capacity.	95
4.2.5. Swelling capacitiy.	96
4.2.6. Water adsorption .	97
4.2.7. Fat absorption capacity.	99
4.2.8. Wettability.	99
4.2.9. Least gelation concentration.	100
4.2.10. Rheological measurements.	102
4.2.10.1. Apparent viscosity.	102
4.2.10.2. Flow behavior constants.	104
4.3. Instrumental analysis.	105
4.3.1. Assignments of functional groups by the furrier transform infrared spectrum technique of pumpkin, cauliflower,	
doum and psyllium husks .	105
4.3.2. Thermal properties.	110
4.3.2.1. Differential scanning calorimetry (DSC).	110
4.3.2.2. Thermogravimetric Analysis (TGA).	115
4.4. Breadmaking quality of the tested wheat flour	
supplemented_with of pumpkin, cauliflower, doum	
and psyllium husks at different level.	120
4.4.1. Dough properties.	120
4.4.1.1. Alveograph characteristics.	120
4.4.1.2. Mixolab .	122
4.4.2. Baking properties .	130
4.4.3. Sensory evaluation.	133
4.5. Biological Evaluation of the pumpkin, cauliflower,	138
doum and psyllium husks powders . 4.5.1. Food consumption.	138
4.5.2. Body weight.	140
4.5.3. Organs weight of rats subjected to feeding on different	140
diets.	140
4.5.4. Blood lipids profile.	141

4.5.5. Histopathological alterations.	145
4.5.5.1. Colon.	145
4.5.5.1.1. Structure and function of colon.	145
4.5.5.1.2. Uncomplicated diverticular disease.	147
4.5.5.1.3. Complicated diverticular disease	147
4.5.5.2. Histopathological alterations of colon tissues in	149
hypercholesterolemic rats fed different diets.	
4.5.5.2. Aorta.	155
4.5.5.3. Heart.	158
4.5.5.4. Brain.	162
5.SUMMARY AND CONCLUSION	169
6.REFERENCES	180
7.ARABIC SUMMARY	_

LIST OF TABLES

Table	Title	Page
No.		
1	Score sheet of pan bread	75
2	Composition of ten experimental diets (%).	77
3	Proximate composition of tested samples (% DMB)	79
4	Dietary fiber fractions of tested samples (on DMB).	81
5	Elemental nutrient composition (mg/100g DMB) pumpkin, cauliflower, doum and psyllium husks.	84
6	Particle size distribution in (g) of the pumpkin, cauliflower	04
O	doum and psyllium husks samples.	87
7	Calculated module values of fineness and uniformity	
8	within the investigated cauliflower and pumpkin samples. Calculated module values of fineness and uniformity	89
	within the Investigated doum and psyllium samples.	90
9	Particle density, Loose bulk density and tapped bulk	
	density of pumpkin, cauliflower, doum and psyllium	
	husks at different particles sizes.	92
10	Water holding capacity (WHC) g/g DMB of pumpkin,	
	cauliflower , doum and psyllium husks at different	
	particle sizes.	95
11	Quantities of water adsorption (gH ₂ O/g solid) of tested	
	samples at different particle sizes.	97
12	Fat absorption capacity (FAC) (g/g oil) of pumpkin,	
	cauliflower , doum and psyllium husks at different	
	particle sizes.	99
13	Wettability (S) of pumpkin, cauliflower, doum and	
	psyllium husks at different particle sizes.	100
14	Least gelation concentration (LGC) of the tested samples	
	at different concentration.	101
15	Rheological constants (k) and (n) of the tested samples.	104
16	Wave numbers (cm ⁻¹) and level of absorption of the	
	infrared spectrum of the pumpkin and cauliflower powder samples.	107

17	Wave numbers (cm ⁻¹) and level of absorption of the infrared spectrum of the doum and psyllium husks powder	
	samples.	108
18	Differential scanning calorimetry(DSC) of different tested	
	samples.	112
19	Thermogravimetric (TGA) data of different tested samples	117
20	Alveograph characteristics of tested wheat flour samples	
	supplemented with fiber.	121
21	Specific Mixolab parameters of the tested samples of	
	wheat flour supplemented with fiber sources from	
	pumpkin, cauliflower, doum and psyllium husks at 2.5, 5,	
	7.5 % and 10 %.	124
22	Physical measurements and moisture content of pan bread	
	samples baked from wheat flour supplemented by	
	different levels of the tested samples.	132
23	Mean score values of the sensory attributes of pan bread	
	made from the tested wheat flour samples supplemented	
	with pumpkin, cauliflower, doum and psyllium husks	
	powders at different ratio (2.5, 5, 7.5 and 10%).	134
24	The 24-hour of food intake and stool output were	
	measured at 30 and 60 days for albino rats.	138
25	Body weight of albino rats fed on different diets during 60	
	days.	139
26	Weight (g) of heart and brain of albino rats fed on different	
	diets after 30 and 60 days.	141
27	Blood lipids profile for albino rats fed on different diets	
	after 30 and 60 days.	142
28	Description of histopathological alterations induced in	
	colon of rats fed different rich-sources of dietary fiber.	150
29	Histopathological alterations in brain induced in	
	different hypercholestremic rats groups fed different	
	diets rich in dietary fibers after 30 and 60 days.	163