EFFECT OF SUPPLEMENTATION LEVEL OF ACACIA LEAVES ON SHEEP PERFORMANCE

By

BOSHRA ROSHDY YOUNAN AWAD

B.Sc. Agric. Sc. (Animal Production), Ain Shams University, 1998 M.Sc. Agric. Sc. (Animal Production), Ain Shams University, 2006

A Thesis Submitted in Partial Fulfillment

Of

The Requirement for the Degree of

DOCTOR OF PHILOSOPHY

in

Agricultural Sciences (Animal Nutrition)

Department of Animal Production Faculty of Agriculture Ain Shams University

Approval Sheet

EFFECT OF SUPPLEMENTATION LEVEL OF ACACIA LEAVES ON SHEEP PERFORMANCE

By

BOSHRA ROSHDY YOUNAN AWAD

B. Sc. Agric. Sc. (Animal Production), Ain Shams University, 1998 M. Sc. Agric. Sc. (Animal Production), Ain Shams University, 2006

This thesis for Ph.D. degree has been approved by: Dr. Mohsen Mahmoud Shoukry Researcher Professor Emeritus of Animal Nutrition, National Research Centre Dr. Ahmed Abdel-Latif Zaky Professor Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University Dr. Ahmed Mamdouh Mansour Associate Professor of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University Dr. Hamdy Mohamed Khattab Professor Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Date of examination: 27/4/2017

EFFECT OF SUPPLEMENTATION LEVEL OF ACACIA LEAVES ON SHEEP PERFORMANCE

By

BOSHRA ROSHDY YOUNAN AWAD

B.Sc. Agric. Sc. (Animal Production), Ain Shams University, 1998 M.Sc. Agric. Sc. (Animal Production), Ain Shams University, 2006

Under the supervision of:

Dr. Hamdy Mohamed Khattab

Professor Emeritus of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Dr. Ahmed Mamdouh Mansour

Associate Professor of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University

Dr. Safinaz Mohamed Shawket

Researcher Professor Emeritus of Animal Nutrition, Department of Animal and Poultry Nutrition, Desert Research Center

ABSTRACT

Boshra Roshdy Younan. Effect of Supplementation Level of Acacia Leaves on Sheep Performance. Ph.D. Thesis, Department of Animal Production, Faculty of Agriculture, Ain Shams University, 2017.

This study was conducted to evaluate the effect of feeding graded levels of dried Acacia saligna leaves (ALH) on the performance response and some blood parameters of pregnant Barki ewes during late pregnancy and lactating season. Ten ewes aged 3-5 years old at the last third of pregnancy in each group (38.0±1.2 kg body weight) were fed with 0, 20, 40 and 60% of ALH as Berseem hay replacement in a completely randomize design for 250 days. The results showed non-significant differences in daily DM intake and digestibility coefficients for DM, EE, NFE and cellulose. Diets of 40% and 60% ALH showed higher (P<0.05) OM, CF, NDF digestibility comparing to 20% ALH and control diets. The highest (P<0.05) NB was recorded for ewes fed 60% followed by 40% ALH. The incorporation of ALH at levels 20, 40 and 60% resulted in non-significant differences in live body weight at all periods of the late pregnancy. Pregnant ewes fed 60% ALH diet recorded the highest (P<0.05) body weight gain (Kg), daily gain (g/day) and milk yield. Birth weights of lambs were not significantly affected. Blood urea concentrations were decreased (P<0.05) with the graded percentage of ALH inclusion instead of Berseem hay. The results of this study revealed that inclusion of dried Acacia saligna leaves up to 60% instead of dietary berseem hay could be best for improving nutrient utilization and ewe's performance during late pregnancy stage.

The Second part of the study was conducted to study the effect of feeding diets containing 40 and 60% Acacia saligna leaves hay (ALH) instead of Berseem hay on growth performance, digestibility, nitrogen utilization, rumen function and economic evaluation and carcass characteristics. Twenty four Barki lambs with an initial body weight of

22.0±0.64 kg and aged 6±0.5 months were used, and divided randomly into three groups, eight lambs each. The experiment lasted 20 weeks. Inclusion of ALH in lambs diets significantly (p<0.05) improved the (P<0.05) OM, CP and CF digestibility coefficients and did not significantly (P>0.05) affect the digestibility of DM, EE and NFE, increased (P<0.01) N retention, overall mean of rumen NH₃-N concentrations, insignificantly (p>0.05) increased the rumen VFA's concentration, significantly (P<0.05) decreased Ophryoscolex, Polystron and Holotrich (Dasytrich and Isotrich) species count, did not affect on MP production at 3, 6 and 9 hrs after feeding, improved (P<0.05) daily and final body weight gain, feed conversion, dressing percentage, but it did not affect weights of best ribs (9th, 10th and 11th) and its components of meat, subcutaneous fat, and fat between muscles, total fat, and bone, increased DM and CP content of lambs meat. The present results could be concluded that dried Acacia saligna leaves could be successfully and safely to replace 40 and 60% of dietary roughage in the diets of pregnant Barki ewes and growing lambs and did counter act their feedlot performance. This may be due to Acacia saligna hay condensed tannins (CT) can maximizing the utilization of dietary protein and animal performance. Also, using Acacia as feed for livestock is considered to be partially and cheaper solution to the problem of feed shortage in arid and semi-arid areas.

Keywords: Pregnant Barki ewes, feed intake, digestibility, nitrogen utilization, body weight change, birth weight, milk yield, growing lambs, carcass traits, ruminal parameters and blood parameters.

ACKNOWLEDGEMENT

In the first, I would like to express my prayerful thanks to God who helped me in everything.

My deepest gratitude extended to **Prof. Dr. H.M. Khttab** Prof. of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University, for his supervising, revising the manuscript and continuous support.

I wish to express my deepest appreciation to **Dr. A.M. Mansour** Associate Professor of Animal Nutrition, Department of Animal Production, Faculty of Agriculture, Ain Shams University for his supervising, revising the manuscript.

I wish to express the extent of my gratitude and appreciation to **Dr. Safinaz M. Shawket** Professor of Animal Nutrition, Department of Animal and Poultry Nutrition, Desert Research Center for her supervising, encouragement, continuous support and revising the manuscript.

Many thanks for **A.M. Abdel-Wahed**, Researcher Professor of Animal Nutrition, Department of Animal and Poultry Nutrition, Desert Research Center for his encouragement, continuous support and valuable advice during the study.

Sincere thanks to every member of the Department of Animal and Poultry Nutrition, Desert Research Center for their valuable guidance, and advice.

Finally, I want to thank all my family for their continuous support.

CONTENTS

	Page
LIST OF TABLES	IIV
LIST OF FIGURES	VI
LIST OF ABBREVIATIONS	VII
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	٤
2.1.Acacia saligna usage	4
2.3.Biomass and nutrients production of A. saligna	4
2.3.1.Effect of Acacia on animal performance	5
2.3.1.Feed intake and nutrient utilization	5
2.3.2.Rumen fermentation	9
2.3.3.Growth and feed efficiency	11
2.4. Tannin definition and classification	14
2.5.Potential use of tanniniferous feedstuffs	15
2.6.Effect of tannins on ruminant's nutrition	17
2.6.1.Voluntary feed intake	17
2.6.2.Ruminal fermentation	20
2.6.3.Digestibility of the diet	25
2.6.4.Animal performance	28
2.7.Management of dietary condensed tannins	30
2.8.Practical use of tannins	31
2.8.1.Treatments to protect dietary protein from ruminal	
degradation	31
2.8.2.Bloat prevention	33
2.8.3Control of internal parasites	33
2.8.4.Decreasing methanogenesis	34
3. MATERIALS AND METHODS	36
a) The first experiment	36
3.1. Animals and their management	36
3.2. Experimental diets	36
3.3. Digestibility trial	38

3.4. Blood metabolites	39
b) The second experiment	39
3.5. Animals and their management	39
3.6. Experimental diets	39
3.7. Digestibility trial	42
3.8. Rumen parameters	42
3.9. Blood metabolites	42
3.10. Slaughter procedures	42
3.11. Economical feed efficiency	43
3.12. Chemical analysis	44
3.13. Statistical analysis	44
4. RESULTS AND DISCUSSION	45
I- THE FIRST EXPERIMENT	45
4.1. Chemical composition of diets	45
a) LATE PREGNANCY STAGE	46
4.2. Effect of ALH on the ewes performance	46
4.2.1. Feed intake	46
4.2.2. Ewe's body weight change	49
b) LACTATION STAGE	51
4.2.3. Feed intake and nutritive value	51
4.2.4. Ewe's body weight change	53
4.2.5. Milk yield and composition	55
4.2.5.1. Milk yield	51
4.2.5.2. Milk chemical composition	59
4.2.6. Lambs body weight changes from birth to weaning	61
4.2.7. Nutrients digestibility and nutritive value	65
4.2.8. Nitrogen utilization	69
4.2.9. Blood metabolites	72
II- THE SECOND EXPERIMENT	74
4.3.2. Feed utilization	74
4.3.1. Chemical composition of feed ingredients	74
4.3.2. Feed utilization	7. 74

4.3.2.1. Feed intake	74
4.3.2.2. Nutrients digestibility coefficient and nutritive value	77
4.3.2.3. Nitrogen utilization	79
4.3.3. Water utilization	82
4.3.4. Rumen fermentation	84
4.3.4.1. Rumen pH	84
4.3.4.2. Rumen ammonia-N (NH3-N) concentrations	85
4.3.4.3. Rumen volatile fatty acid concentration	87
4.3.4.4. Rumen protozoa differential and total count	90
4.3.4.5. Microbial protein	92
4.3.5. Blood metabolites	94
4.3.6. Lambs live body weight and daily weight gain	97
4.3.7. Feed conversion	101
4.3.8. Economical feed efficiency	102
4.3.9. Carcass characteristics	104
4.3.9.1. Physical composition of the 9th, 10th 11th rib cut	106
4.3.9.2. Meat chemical composition	107
5. SUMMARY AND CONCLUSION	109
6. REFERENCES	117
ARABIC SUMMARY	150

LIST OF TABLES

Table		Page
No.		
1	Fresh and nutrient yield (kg/fed) of A. saligna shrubs	
	during the four seasons	4
2	Chemical composition of Acacia (%, DM basis) in	
	different forms	5
3	Voluntary feed intake, digestibility and nutritive values	
	of A. saligna by sheep and goats	6
4	Chemical composition of the feedstuffs fed to ewes (%	
	of DM).	37
5	Formulation and chemical analysis (% of DM) of ewes	
	diets.	38
6	Chemical composition of the feedstuffs fed to growing	
	lambs.	40
7	Composition and chemical analysis (%, on DM basis) of	
	the experimental diets for growing lambs.	41
8	Feed intake of the experimental diets fed to pregnant	
	ewes at late pregnancy stage.	47
9	Body weight changes (kg) of ewes fed the experimental	
	diets during late pregnancy.	49
10	Feed intake (g/h/d) by lactating Barki ewes fed the	
	experimental diets.	51
11	Body weight changes (kg) of Barki lactating ewes during	
	lactation period.	53
12	Daily and total milk production of ewes fed the	
	experimental diets.	55
13	Milk chemical composition of lactating Barki ewes fed	
	the experimental diets.	59
14	Lambs birth weights (kg) and body weight gain of	
	suckled ewes fed the experimental diets.	61
15	Pre-weaning growth rates of lambs (g/d).	63

Table		Page
No.		
16	Nutrients digestibility and nutritive value by dry ewes	
	fed the experimental diets.	66
17	Nitrogen utilization by dry Barki ewes fed the	
	experimental diets.	70
18	Blood metabolites of dry ewes fed the experimental	
	diets.	73
19	Dry matter intake (g/h/d) by growing Barki lambs fed	
	graded levels of ALH.	74
20	Nutrients intake (g/h/d) by growing Barki lambs fed the	
	experimental diets.	76
21	Nutrients digestibility and nutritive value of the	
	experimental diets fed to growing Barki lambs	78
22	Nitrogen utilization by growing Barki lambs fed the	
	experimental diets	80
23	Water utilization (ml/d) by growing Barki lambs fed the	
	experimental diets	83
24	Rumen pH values of growing Barki lambs fed the	
	experimental diets	84
25	Rumen Ammonia-N (mg/100ml rumen liquor) of	
	growing Barki fed the experimental diets	85
26	Volatile fatty acids (VFAs) concentrations (m eq/100 ml	
	R.L.) in the rumen of growing Barki lambs fed the	
	experimental diets	88
27	Rumen protozoa differential and total count (x105/ ml	
	R.L.) in the rumen of growing Barki lambs fed the	
	experimental diets	90
28	Rumen microbial protein concentrations (mg/100 ml	
	R.L.) of growing lambs fed experimental diets.	93
29	Blood metabolites of growing Barki lambs fed the	
	experimental diets.	95

Гable		Page
No.		
30	Body weight changes (kg) of growing Barki lambs fed	
	the experimental diets	97
31	Body weight gain (g/d) of growing Barki lambs fed the	
	experimental diets	99
32	Feed conversion (kg DM/kg body gain) of growing	
	Barki lambs fed the experimental diets	101
33	Economical feed efficiency of lambs fed experimental	
	diets	103
34	Carcass characteristics, edible and non-edible offal of	
	growing lams fed the experimental diets	105
35	Physical composition of the 9-11th ribs cut and eye	
	muscle area of lambs fed the experimental diets	107
	Chemical composition (%) of best ribs soft tissue of	
	growing Barki lambs fed the experimental diets	107

LIST OF FIGURES

Fig. No.		Page
1	Body weight change of ewes fed fed the experimental	
	diets	39
2	Body weight change of ewes fed fed the experimental	
	diets	42
3	Length of lactation and daily milk production of ewes	
	fed the experimental diets	44
4	Lambs weight gain from birth to weaning (16 weeks,	
	Kg) of suckled ewes fed the experimental diets.	48
5	Pre-weaning growth rates of suckling lambs (g/day)	50
6	DM intake (g/h/d) by growing lambs fed the	
	experimental diets	59
7	Rumen pH values of growing Barki lamb fed the	
	experimental diets	67
8	Rumen ammonia-N concentration fed the experimental	
	diets	68
9	Rumen VFA's concentration fed the experimental diets	70
10	Microbial protein of growing Barki lambs fed the	
	experimental diets	74
11	Body weight gain of growing Barki lambs fed the	
	experimental diets	77

LIST OF ABBREVIATIONS

A/G ratio : Albumin/globulin ratio

ADF : Acid-detergent fiber
ADG : Average daily gain
ADL : Acid detergent lignin
ALH : Acacia leaves hay

BH : Berseem hay
CF : Crude fiber

CFM : Concentrate feed mixture

CP : Crude protein

CT : Condensed tannins

DCP : Digestible crude protein

DM : Dry matter

DMI : Dry matter intake

EE : Ether extract

HT : Hydrolysable tannins

MP : Microbial protein

MP : Microbial protein

NDF : Neutral detergent fiber
NFE : Nitrogen free extract
NH3-N : Ammonia nitrogen

OM : Organic matter

PEG : Poly ethylene glycol
TDN : Total digestible nutrient

VFAs : Volatile fatty acids

1. INTRODUCTION

Increasing populations, economic growth and urbanization are increasing demands for livestock products, which in turn are driving demand for increasing feed, and generating additional pressure on natural grazing resources. In addition, lack of regulatory mechanisms to control grazing combined with the expansion of cultivation into previously uncultivated areas is aggravating degradation of rangelands worldwide. It has been proposed that fodder shrubs and trees can be integrated into production systems to provide additional feed resources for livestock, to provide a source of fuel, to reduce wind erosion when planted as wind breaks and to stabilize or rehabilitate degraded areas, so, these plants have a potential to prevent desertification and mitigating the effects of droughts (Robles *et al.*, 2008; Mulas and Mulas, 2009 and chentli *et al.*, 2014).

A major part of diets for ruminants in arid, semi-arid and mountainous areas is derived from shrubby vegetation. Recent research into the constituents of many of these shrubby plants has shown these plants to contain appreciable quantities of secondary compounds. The presence of these anti-nutritional secondary compounds (e.g. tannins, oxalates, phenols,...), with potential adverse effects on rumen microbial fermentation, feed digestibility and animal performance, could restrict nutrient utilization of shrubby vegetation (Waghorn and McNabb, 2003; Mueller-Harvey, 2006).

Under African conditions, *Acacia saligna* and *Acacia nilotica*, leguminous trees are present in sufficient quantities to contribute to ruminant diets (**Degen** *et al.*, **1995** and **Mlambo** *et al.*, **2008**). Their foliage may be used as a protein and energy supplement when animals are given low quality roughage (**Krebs**, **2007**). **Tamir** and **Asefa** (**2009**) reported that *Acacia saligna* grows on different soils but does best on light to medium loam and well drained soils (**Azene** *et al.*, **1993**). The digestibility of dry matter (DM), organic matter (OM) and energy contents of fresh A. saligna has been reported to be generally low mainly