SURGICAL APPROACHES TO LATERAL VENTRICLE TUMORS AND ITS OUTCOMES

Essay

Submitted for Complete Fulfillment of the Master degree in Neurosurgery

By

ZIAD MOHIE TAHA ELSHAER

M.B.B Ch.

Faculty of Medicine, Ain Shams University

Under Supervision of

PROF. DR. ADEL NABIH MOHAMED

Professor of Neurosurgery, Faculty of Medicine, Ain Shams University

ASSIST. PROF. DR. KHALED FATHY SAOUD

Assistant Professor of Neurosurgery, Faculty of Medicine, Ain Shams University

ASSIST. PROF. DR. TAREK HAMDY EL SERRY

Assistant Professor of Neurosurgery, Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2014

ACKNOWLEDGEMENT

I would like to express my deep gratitude and appreciation to Professor Dr. Adel Nabih Mohamed, Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his kind guidance and support throughout this work.

I would like to extend my deepest thanks and gratitude to Professor Dr. **Khaled Fathy Saoud**, Assist. Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his great support and constant encouragement.

I would like to express my sincere thanks to Professor Dr. **Tarek Hamdy El Serry**, Assist. Professor of Neurosurgery, Faculty of Medicine, Ain Shams University, for his tremendous assistance, close supervision and experienced advice.

I would like to express my warm appreciation and love for my Family for their encouragement with special thanks to my Father, Mother and my Brother.

I would like to express my appreciation and love for my Wife for her support and encouragement.

Last but not least, I would like to thank all my Professors and Colleagues in the Department of Neurosurgery, Faculty of Medicine, Ain Shams University, for their great help.

TABLE OF CONTENTS

Table of figures		p. 2
Table of tables		p. 5
Abbreviations		p. 6
Introduction		p. 7
Section one:	Anatomy of lateral ventricles	p. 10
	 Neural relations 	
	 Lateral ventricular walls 	
	 Arterial relations 	
	 Venous relations 	
Section two:	Pathological features of tumors of lateral	p. 41
	ventricle	
	 Common tumors of lateral ventricles 	
	and their pathological features	
Section three:	Clinical picture of tumors of lateral	p. 55
	ventricle	
Section four:	Investigations & radiological findings of	p.65
	tumors of lateral ventricle	
Section five:	Surgical approaches for tumors of	p. 84
	lateral ventricle	
	 Indication of surgery 	
	 Preparation 	
	 Intraoperative imaging and monitoring 	
	• Choice of surgical approach	
Summery & Conclusion		p. 130
Refrences		p. 134
Arabic summery		p. 145

TABLE OF FIGURES

FIGURE 1.1	Lateral View Of The Ventricular System And	
	Neighboring Neural Structures.	
FIGURE 1.2	Relationship of the corpus callosum, caudate nucleus,	
	and fornix and hippocampal formation to the lateral	
	ventricles.	
FIGURE 1.3	Relationship of the internal capsule to the right lateral	
	ventricle.	
FIGURE 1.4	Superior view into the lateral ventricles.	
FIGURE 1.5	Superior view of the temporal and occipital horns	
	with the upper part of the hemisphere removed.	
FIGURE 1.6	Inferior view of the calcar avis.	
FIGURE 1.7	Structures in the wall of lateral ventricle.	
FIGURE 1.8	Stepwise dissection of the choroidal fissure.	
FIGURE 1.9	Arterial relations to lateral ventricles, lateral and	
	superior view.	
FIGURE 1.10	Superior view showing the relationship between the	
	lateral and third ventricle and the choroid plexus.	
FIGURE 1.11	Venous relations to lateral ventricles, ateral and	
	superior view.	
FIGURE 1.12	Roof of the third ventricle, superior view	
FIGURE 2.1	Histological features of Ependymoma.	
FIGURE 2.2	Histological features of Subependymoma.	
FIGURE 2.3	Histological picture of central neurocytoma.	
FIGURE 2.4	Histological picture of grade 2 astrocytoma.	
FIGURE 2.5	Histological picture of glioblastoma.	
FIGURE 2.6	Histological picture of choroid plexus papilloma.	
FIGURE 2.7	Histological picture of choroid plexus carcinoma.	
FIGURE 2.8	Histological picture of meningothelial meningioma.	
FIGURE 2.9	Histological picture of craniopharyngioma.	
FIGURE 4.1	Tractogram showing ascending & descending	
	pathways among cortex, brainstem, and cerebellum.	
FIGURE 4.2	MRI of a patient with lateral ventricle Ependymoma.	
FIGURE 4.3	Brain imaging of a patient with anaplastic	
	ependymoma.	
FIGURE 4.4	Brain imaging of a female patient with highly	
	vascularized subependymoma.	

FIGURE 4.5	Brain imaging of a patient with central neurocytoma.	
FIGURE 4.6	Brain imaging of a patient with pilocytic astrocytoma.	
FIGURE 4.7	Brain imaging of a patient with anaplastic glioma.	
FIGURE 4.8	Brain imaging of a patient with benign plexus	
	papilloma.	
FIGURE 4.9	Brain imaging of a patient with choroid plexus	
FIGURE 4.10	carcinoma. Brain imaging of a patient with left atrial	
FIGURE 4.10	meningioma.	
FIGURE 4.11	MRI image showing large well defined cystic	
1100KE 4.11	craniopharyngioma in the frontal horn of the left	
	lateral ventricle with a small extension in the	
	supraselar cistern.	
FIGURE 5.1	Illustrations of frontal horn and ventricular body	
	tumors showing possible approaches according to tumor origin and development.	
FIGURE 5.2	Illustrations of temporal horn tumors showing main	
1100112 0.2	routes according to tumor development.	
FIGURE 5.3	Illustrations of trigone and occipital horn tumors	
	showing possible approaches according to tumor	
FIGURE 5.4	origin and development.	
FIGURE 5.4	Patient in supine position with head flexed 15 to 20 degrees in Mayfield head fixation.	
FIGURE 5.5.1	Steps of the anterior transcallosal interhemispheric	
FIGURE 5.5.1	approach (bone flap & dural incision).	
FIGURE 5.5.2	Steps of the anterior transcallosal interhemispheric	
	approach (Initial development of the midline plane at	
	the sagittal sinus with identification of the falx &	
FIGURE 5.6	Exposure of the lateral ventricle).	
FIGURE 5.6	Steps of the anterior transcallosal interhemispheric approach (exposure of the corpus callosum with the	
	pericallosal arteries).	
FIGURE 5.7	Intraoperative photographs of a 32-year-old woman	
	who suffered from intraventricular subependymoma.	
FIGURE 5.8.1	Transcortical approach to the lateral ventricle.	
FIGURE 5.8.2	A choroid plexus papilloma has been exposed using	
	the transcortical approach.	
FIGURE 5.9.1	Transfrontal approach to the anterior part of the	
	lateral ventricle.	

FIGURE 5.9.2	A tumor that straddles the foramen of Monro and	
	extends into both the frontal horn and third ventricle	
	has been exposed.	
FIGURE 5.10	Transcortical approach to a tumor in the atrium of the right lateral ventricle.	
FIGURE 5.11	Images obtained in a 52-year-old-man with a meningioma originating from atrium of the right lateral ventricle.	
FIGURE 5.12	Posterior transcallosal approach to the atrium of the right lateral ventricle.	
FIGURE 5.13	Occipital-transcingulate approach to an arteriovenous malformation of the right atrium.	
FIGURE 5.14	Right frontotemporal craniotomy and approach to temporal horn through a temporal lobectomy.	
FIGURE 5.15	Subtemporal approach to the temporal horn and basal cisterns.	

TABLE OF TABLES

TABLE 3.1	Symptoms and signs of lateral ventricle tumors in	
	relation to the site of the tumor in a study of 46	
	patients in Turkey.	
TABLE 3.2	Karnofsky performance scale	

ABBREVIATIONS

A.Ch.A	Anterior choroidal artery
L.P.Ch.A	Lateral posterior choroidal artery
M.P.Ch.A	Medial posteror choroidal artery
Ch.Pl	Choroid plexus
PCA	Posterior cerebral artery
ACA	Anterior cerebral artery
Calc. A	Calcrine artery
Car. A	Carotid artery
Bas. A	Basilar artery
Thal.Str.V	Thalamostriate vein
Int.Cer.V	Internal cerebral vein
H-MRS	Proton MR Spectroscopy
Cho	Choline
NAA	N-Acetyle aspartate
Cre	Creatinine
SEGA	Subependymal giant cell astrocytoma
ADC	Apparent Diffusion Coefficient
AFP	Alpha fetoprotein
HCG	Human chorionic gonadotropin

Introduction

Tumors of the lateral ventricle are rare lesions in general neurosurgical practice, with a reported incidence between 0.81% and 1.6%. Lesions that affect the lateral ventricle include a large variety of benign tumors, malignant tumors, and cyst formations. Tumors that originate in the ventricular wall and expand mainly within the ventricular cavity, or arise and expand within the lateral ventricle are considered real lateral ventricle tumors. Tumors in this location are generally slowly growing, and can become large before causing symptoms. (Secer et al., 2008)

Typically, these lesions cause symptoms and signs of obstruction of the normal cerebrospinal fluid (CSF) pathways, compression of the adjacent neural structures, or hydrocephalus induced by overproduction of CSF. (**Pendl** *et al.*, 1992)

Tumors that are most likely to occur in the lateral ventricles astrocytoma, ependymoma, are oligodendroglyoma, choroid papilloma, plexus meningioma. Subependymal giant cell astrocytoma subependymoma, pilocytic (SGCA), astrocytoma, neurocytoma, choroid plexus carcinoma, teratoma, choroid hemangioblastoma, epidermoid plexus cyst, tumor, cavernous angioma, and metastatic carcinoma are rare intraventricular tumors. Lateral ventricular tumors are easily detected with computed tomography (CT) and magnetic resonance imaging (MRI) at a time when they are still small and produce insignificant clinical manifestations. Microsurgical resection has been the treatment of choice for the majority of these lesions. Complete resection of many, but not all, of these lesions is possible via the transcortical or transcallosal route. Multimodal strategies, including stereotactic biopsy, radiosurgery, adjuvant radiotherapy, and chemotherapy further improve clinical outcomes. The location of the lateral ventricles makes passing through cortical structures mandatory in all approaches to these lesions. The surgeons must choose the way that will cause least morbidity, provide adequate working space, and achieve a complete resection by surgery for these deep lesions. The transcallosal route is performed by some neurosurgeons for a variety of reasons. The transcallosal approach may decrease the risk of postoperative seizures and functional deficits. It is recognized that the transcallosal route to the ventricles can be safely used to excise lesions in the ventricular body, anterior horn, and atrium. The transcortical approach to the lateral ventricles is a simple and attractive alternative to the transcallosal approach for many deep tumors. It has the advantage of simplicity. Especially, tumors located in the temporal horn and atrium are safely and easily operated on with transcortical approach. (Secer et al., 2008)

Planning and performing surgery via the transcallosal or transcortical approach is dependent on the tumor localization and origin, tumor size, tumor nature, and tumor expanding side. Amidst this wide multiplicity of routes and techniques for lateral ventricle tumors we think an up-to-date **reviewing** and **pooling** of available data will summarize the current state of knowledge on the surgical management of lateral ventricle tumors so as to provide strong evidence of each surgical approach and its outcomes.

Section one

Anatomy of the lateral ventricles

ANATOMY OF THE LATERAL VENTRICLES

Operative approaches to the lateral ventricles are made challenging by their deep position near the centre of intracranial space, complete encasement in neural tissue, curved shape within the cerebrum, variable shape and size in the different lobes, narrow communicating orifices making them susceptible to obstruction, expansile nature allowing them to act as mass lesions, and walls containing important motor, sensory, and visual pathways and vital autonomic and endocrine centres. The lateral ventricles provide deep cavities through which the third ventricle and basal cisterns may be approached. In this chapter, the neural and vascular relationships that provide the basis for optimizing the results obtained with intraventricular operations are reviewed before the individual operative approaches are described. Many of the structures that form part of the walls of the lateral ventricle are also seen in the third ventricle. The lateral ventricles are intimately related to the deep venous system, and numerous arteries supply the walls of ventricles. (Rhoton, 2002)

Each lateral ventricle is a C-shaped cavity that wraps around the thalamus and is situated deep within the cerebrum (**Fig. 1.1**). Each lateral ventricle has five parts: the frontal (anterior), temporal, and occipital (posterior) horns, the body, and the atrium. Each of these five parts has medial and lateral walls, a roof, and a floor. In addition, the frontal and temporal horns and the atrium have anterior walls. These walls are formed predominantly by the thalamus, septum pellucidum, deep cerebral white matter,

corpus callosum, and two C-shaped structures, the caudate nucleus and the fornix, that wrap around the thalamus. (Rhoton, 2002)

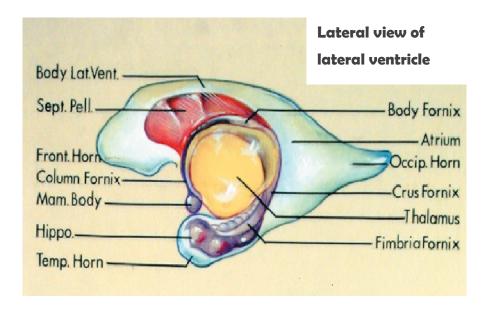


FIGURE 1.1 Lateral View of The Ventricular System And Neighboring Neural Structures. *(Rhoton, 2002)*

Neural relations

Thalamus

The thalamus is located in the center of the lateral ventricle. Each lateral ventricle wraps around the superior, inferior, and posterior surfaces of the thalamus. The body of the lateral ventricle is above the thalamus, the atrium and occipital horn are posterior to the thalamus, and the temporal horn is inferolateral to the thalamus. The superior

surface of the thalamus forms the floor of the body, the posterior surface of the pulvinar of the thalamus forms the anterior wall of the atrium, and the inferior surface of the thalamus is situated at the medial edge of the roof of the temporal horn. (**Timurkaynak** *et al.*, **1986**)

Caudate Nucleus

The caudate nucleus is an arched, C-shaped, cellular mass that wraps around the thalamus and constitutes an important part of the wall of the lateral ventricle (Fig. 1.2). It has a head, body, and tail. The head bulges into the lateral wall of the frontal horn and body of the lateral ventricle. The body forms part of the lateral wall of the atrium, and the tail extends from the atrium into the roof of the temporal horn and is continuous with the amygdaloid nucleus near the anterior tip of the temporal horn. In the body of the lateral ventricle, the caudate nucleus is superolateral to the thalamus; in the atrium, it is posterolateral to the thalamus; and in the temporal horn, it is inferolateral to the thalamus. The stria terminalis, a fiber tract that runs parallel and deep to the thalamostriate vein, arises in the amygdaloid nucleus and courses along the border between the caudate nucleus and the thalamus in the wall of the ventricle from the temporal horn to the body. (Timurkaynak et al., 1986)

Fornix

The fornix is another C-shaped structure that wraps around the thalamus in the wall of the ventricle (**Fig. 1.1**). The fornix consists mainly of hippocampomamillary tract fibers that originate from the hippocampus, subiculum, and