

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

Soluble Interleukin-2 Receptor As A Marker of T Cell Activation in Bronchial Asthma

Thesis

Submitted for Partial Fulfillment of
The M.Sc Degree

1 n

,, In Pacification

By Gehan Sabry Asaad Yousef (M.B.,B.Ch)

Supervised By

Prof. Dr. Mohamed Mohamed Farid

Professor of Paediatrics Faculty of Medicine Ain Shams University

Dr. Safaa Shafik Imam Lecturer of Paediatrics Faculty of Medicine Ain Shams University

Dr. Karim Yehia Aly Shaheen
Lecturer of Clinical Pathology
Faculty of Medicine
Ain Shams University

Faculty of Medicine Ain Shams University

2002

Soluble Interleukin-2 Receptor As A Marker of T Cell Activation in Bronchial Asthma

Thesis

Submitted for Partial Fulfillment of The M.Sc Degree

In

. Paediatrics

By Gehan Sabry Asaad Yousef (M.B.,B.Ch)

Supervised By

Prof. Dr. Mohamed Mohamed Farid

Professor of Paediatrics Faculty of Medicine Ain Shams University

Dr. Safaa Shafik Imam Lecturer of Paediatrics Faculty of Medicine Ain Shams University

Dr. Karim Yehia Aly Shaheen
Lecturer of Clinical Pathology
Faculty of Medicine
Ain Shams University

Faculty of Medicine Ain Shams University

Acknowledgments

I would like to express my endless gratitude and appreciation to *Prof. Dr. Mohamed Mohamed Farid*, Professor of pediatrics, Faculty of Medicine, Ain Shams University, for giving me the honour to work under this meticulous supervision and for providing me with a lot of encouragement and support throughout this whole work.

I find no words by which I can express my extreme thankfulness and profound gratitude to *Dr. Safaa Shafik Imam*, Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her generous help, guidance, and great fruitful advice.

I wish to express my deep appreciation to *Dr*. *Karim Yehia Aly Shaheen*, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University for his great help, continuous support and sincere advise during the laboratory part of this work.

Also, I am greatly honoured to express my deepest gratitude to my family, who continuously supports me and share in a way or another in the performance of this work.

Lastly my deep thanks and best wishes to my patients, and their families as their cooperation was indispensable for the performance of this work.

Contents

•	Introduction	1
•	Aim of the Work	3
•	Review of Literature	4
	- Pathogenesis of asthma, T-cell immunity	4
	- Other cytokines in bronchial asthma	35
	- Interleukin-2 receptors	45
•	Patients & Methods	69
•	Results	75
•	Discussion	93
•	Summary and Conclusion	103
•	Recommendations	105
•	References	106
•	Arabic Summary	

List of Abbreviations

AEC Absolute eosinophilic count

Ag Antigen

AIDS Acquired immunodeficiency disease

APC Antigen presenting cells

BALF Bronchoalveolar lavage fluid
BHR Bronchial hyper-responsiveness
BMT Bone marrow transplantation

CD Cluster of differentiation marker

CPB Cardiopulmonary by-pass
CSFs Colony stimulating factor
EAR Early asthmatic response

EBV Epstein bare virus.

ECP Eosinophilic cationic protein
EDN Eosinophil desired neurotoxin

EIA Exercise induced asthma
EPX Eosinophilic peroxidase

EVEA Eosinophilic viability enhancing activity
G-CSF Granulocyte colony stimulating factor

GM-CSF Granulocyte macrophage colony stimulating factor

GVHD Graft versus host disease HBsAg Hepatitis-B surface antigen.

HIL-V-1 Human immunolymphocyte virus

HLA Human leukocytic antigen

ICAM-1 Intercellular adhesion molecule-1

Ig Immunoglobulin.

ILs Interleukins.
INFs Interferons

IVIV Intravenous immunoglobulin

LA Leukocyte functional antigen

LAK Lymphokines activated killer cells

LAR Late asthmatic response

LT Leukotriene

LTD4 Leukotriene D4.

M-CSF Macrophage stimulating factor

MBP Major basic protein

MHC Major histocompatibility complex
NAEP National asthma education program

NEP Neutral endopeptidase

NHL Non Hodgkin lymphoma

NK Natural killer cells

NSAID Nonsteroidal anti-inflammatory drugs

PAF Platelet activating factor.

PANTes Regulated upon activation normal T-cell expressed

and secreted

PDGF-β Platelet derived growth factor-β

PG Prostaglandin

sIL-2R Soluble interleukin-2 receptor SLE Systemic lupus erthematosis

TCR T-cells receptors

TGF- β Transforming growth factor- β

TH T-helper

TIL Tumour infiltrating lymphokines

TLC Total leucocytic count
TNF Tumour necrosis factor

Tx Thromboxane A2

VCAM-1 Vascular cellular adhesion molecular-1

WLRI Wheezy lower respiratory illness