A Comparative Study On The Effect Of Femtosecond Laser Versus Mechanical Microkeratome Flap Creation On Corneal Biomechanics

Thesis

Submitted for Partial Fulfillment of MD Degree In

Ophthalmology

Bv

Moataz Mohammad Wessam Taha

M.B.B.Ch, M.Sc., Ain Shams University

Under supervision of

Prof. Dr. Ahmad Samy Ibrahim Abo El-Naga

Professor of Ophthalmology

Faculty of Medicine, Ain Shams University

Prof. Dr. Amr Saleh Galal Mousa

Professor of Ophthalmology

Faculty of Medicine, Ain Shams University

Prof. Dr. Mahmoud Ahmad Abdel-Hamid

Professor of Ophthalmology

Faculty of Medicine, Ain Shams University

Faculty of Medicine – Ain Shams University

Cairo - Egypt

2016

Acknowledgement

I always feel gratitude to **Professor Doctor Ahmad Samy Abo El-Naga** for his generous support not only during this research work but essentially during my ophthalmic career.

I would like also to thank Professor Doctor Amr Saleh Galal and Professor Doctor Mahmoud Ahmad Abdel-Hamid for their continuous support, keen advice, valuble ideas and extensive experience.

My deepest thanks to Assistant Professor Doctor Azza Ahmad, this work was impossible to see light without her assistance. She willingly took the burden of statistical analysis of results in a professional way.

CONTENTS

List of figures	iii
List of tables i	iv
List of charts	vii
List of abbreviations v	viii
Protocol 1	1
Introduction	9
Aim of the work	14
Review of literature	17
<u>Chapter one</u>	
LASIK flaps	
1. Introduction	17
2. Mechanical microkeratome versus femtosecond flaps	18
3. Femtosecond advantages over mechanical microkeratomes flap	

Chapter two

Ocular response ana	lyzer and cornea	l biomechanics
---------------------	------------------	----------------

1.	Introduction2	26
2.	Principles of ORA	18
P	atients and methods 36	6
F	desults4	3
Г	piscussion 6.	3
(Conclusion 68	8
S	ummary7	0
F	deferences	4
A	rabic summary 80	n

List of figures

Figure number	Title	Page number
1	Zeiss Visante imaging system	20
2	Stress-strain response diagram of viscoelastic behavior	27
3	Ocular Response Analyzer	28
4	Ocular Response Analyzer measurement signal	30
5	Schematic representation of corneal deformation caused by Ocular Response Analyzer	31
6	Moria M2 automated microkeratome	39
7	WaveLight® EX500 Excimer Laser	40
8	WaveLight® FS200 femtosecond Laser	40

List of Tables

Table number	Title	Page number
1	Operative parameters	39
2	Mean and Range age of microkeratome group	43
3	Gender distribution in microkeratome group	44
4	Mean preoperative MRSE "diopters" in microkeratome group	44
5	Mean and Range of preoperative CCT, CH and CRF in microkeratome group	45
6	Mean and Range of flap thickness, ablation depth and residual stromal bed in microkeratome group.	45
7	Mean and Range of MRSE 1 week postoperative in microkeratome group	46
8	Mean and Range of CH 1week, 1 month and 3 month postoperative in microkeratome group.	46
9	Mean and Range of CRF 1week, 1 month and 3 month postoperative in microkeratome group.	47
10	Mean and Range age of femtosecond group	47
11	Gender distribution in femtosecond group	47

12	Mean preoperative MRSE ''diopters'' in femtosecond group	48
13	Mean and Range of preoperative CCT, CH and CRF in femtosecond group	48
14	Mean and Range of flap thickness, ablation depth and residual stromal bed in femtosecond group.	49
15	Mean and Range of MRSE 1 week postoperative in femtosecond group	49
16	Mean and Range of CH 1week, 1 month and 3 month postoperative in femtosecond group.	50
17	Mean and Range of CRF 1week, 1 month and 3 month postoperative in femtosecond group.	50
18	Probability "P-value" as regard age between 2 groups.	51
19	Probability "P-value" as regard gender distribution between 2 groups.	52
20	Probability "P-value" as regard preoperative MRSE between 2 groups.	52
21	Probability "P-value" as regard CCT between 2 groups.	53
22	Probability "P-value" as regard preoperative CH between 2 groups.	53
23	Probability "P-value" as regard preoperative CRF between 2 groups.	54
24	Probability "P-value" as regard flap thickness between 2 groups.	54
25	Probability "P-value" as ablation depth between 2 groups	55

26	Probability "P-value" as regard residual stromal bed between 2 groups	55
27	Probability "P-value" as regard preoperative and 1 week postoperastive MRSE in microkeratome group	57
28	Probability "P-value" as regard preoperative and 1 week postoperative MRSE in femtosecond group	57
29	Probability "P-value" as regard preoperative and 1 week postoperative MRSE group between 2 groups	58
30	Probability "P-value" as regard 1 week, 1 month and 3 month CH between 2 groups	58
31	Probability "P-value" as regard 1 week, 1 month and 3 month CRF between 2 groups	59
32	Probability "P-value" as regard preoperative, 1 week, 1 month and 3 month CH between 2 groups	59
33	Probability "P-value" as regard preoperative, 1 week, 1 month and 3 month CRF between 2 groups	60
34	Pearson's correlation coefficient "r" in microkeratome group	62
35	Pearson's correlation coefficient "r" in femtosecond group	63

List of charts

Chart number	Title	Page number
1	Mean flap thickness, ablation depth and residual stromal bed between 2 groups	56
2	Mean CH and CRF preoperatively and 1 week, 1 month and 3 month postoperatively in microkeratome group	61
3	Mean CH and CRF preoperatively and 1 week, 1 month and 3 month postoperatively in femtosecond group	61
4	Mean CH and CRF preoperatively and postoperatively between 2 groups	63

List of Abbreviations

AD	Ablation depth
CCT	Central corneal thickness
СН	Corneal hysteresis
CRF	Corneal resistance factor
DLK	Diffuse lamellar keratitis
FS	Femtosecond
FT	Flap thickness
GAG	Glucosaminoglycans
НОА	High order abberations
LASIk	Laser in situ keratomileusis
MK	Mechanical microkeratome
MRSE	Manifest refractive spherical equivalent
Nd:YAG	Neodymium doped yttrium aluminum garnet
ORA	Ocular response analyzer
PG's	Proteoglycans
RSB	Residual stromal bed
TLSS	Transient light-sensitivity syndrome

Introduction

Since the development of corneal photoablation with the excimer laser in refractive surgery, many studies have reported the safety and the ability of this technique for the correction of ametropia, with good anatomic and visual results (Sugar et al., 2002 and Hammond et al., 2005).

Excimer laser refractive surgery is the most commonly used operation for correcting myopia. This refractive surgery uses the excimer laser to ablate corneal tissue and to reshape the cornea, changing its refractive power. The procedures are divided into two main groups: laser assisted in situ keratomileusis (LASIK) and surface treatments (*Min et al.*, 2008).

Laser in situ keratomileusis is currently the procedure of choice for correcting moderate to severe myopia and myopic astigmatism. In this technique, a hinged flap is created and folded back, and the exposed stroma is photoablated using an excimer laser. In LASIK for myopia, stromal tissue is ablated so that the curvature of the central cornea is flattened to compensate for the excessive

refractive power or longer axial length of the myopic eye (Suzuki et al., 2006).

The creation of a corneal flap is one of the fundamental steps in LASIK. A LASIK flap can be created with a mechanical microkeratome or femtosecond laser. The flap consists of epithelium, Bowman's layer and anterior stroma. Excimer laser beam is then applied directly to the stroma. Once ablation is completed, the flap is repositioned (*Fong*, 2007).

Mechanical microkeratome systems produce a meniscus shaped flap, with the flap being thinner in the center and thicker in the periphery. These flaps show variability in both flap thickness and diameter with a standard deviation of approximately 20 to 40 μ m in thickness and \pm 0.3 mm in diameter (*Ucakhan*, 2002).

The femtosecond laser is a solid state infrared laser with a 1053 nm wavelength used to create corneal flaps in LASIK. The femtosecond laser creates focused cavitation spots within the stroma delivered in a raster pattern that begins at the hinge and progresses temporally. The spots are placed 5 to 12 μ m apart, and as the microcavitation

bubbles expand, the spots coalesce, forming a resection plane. After the horizontal plane is created, the pattern changes to a vertical one, creating an edge around the flap. Dimensions of the flap (thickness, diameter, hinge size, location) are controlled using computer software. During treatment, the cornea is flattened with a suction applanating lens to immobilize the eye and to allow treatment of a geometrically simpler planar cornea (*Ratkay-Taub et al.*, 2001).

Compared to a flap created with a mechanical microkeratome, a femtosecond laser flap offers several potential advantages; more uniform flap thicknesses, customizable flap diameter and hinge position, smoother stromal beds, and lower rates of flap creation complications (*Patel et al.*, 2007).

In addition to anatomic data, an examination of the biomechanical properties of each cornea could be helpful in analyzing their individual qualitative properties before a photoablative procedure (*Kerautret et al.*, 2008).

The *Ocular Response Analyzer*® (ORA; Reichert, Buffalo, NY), is the first device to allow exploration of the

corneal viscoelastic and biomechanical properties. It utilizes a rapid air impulse and an advanced electro-optical system to record two applanation pressure measurements; one while the cornea is moving inward and the other as cornea returns. Due to its biomechanical properties, the cornea resists the dynamic air puff causing delays in the inward and outward applanation events, resulting in two different pressure values (*Schweitzer et al.*, 2010).

Each *Ocular Response Analyzer*® measurement signal generates a total of 42 parameters (37 waveform parameters, Waveform score, Corneal Hysteresis, Corneal Resisting Factor, IOP_g "Goldmann" and IOP_{cc} "Corrected Corneal"). Waveform parameters are mathematical representations of waveform shape characteristics such as peak height, area, slopes, etc. (<u>Http://www.reichert.com</u>, 2016).

Aim of the work

To compare the effects of femtosecond laser and mechanichal microkeratome on the biomechanical properties of the cornea using *Ocular Response Analyzer*® in patients undergoing myopic laser refractive surgery.

Patients and Methods

Our study will include 100 eyes with myopia (mild – moderate) and myopic astigmatism (simple and compound)

.

The patients will be divided randomly into two groups:

- *Group* (*A*): 50 eyes in which femtosecond laser will be used for flap creation (FS 200 Wavelight).
- *Group* (*B*): 50 eyes in which mechanical microkeratome will be used for flap creation (Moria M2 automated microkeratome).

Inclusion criteria:

- **1.** Age: 20 years or more and 40 years or less.
- 2. Refractive error:
- Myopia up to -6.00 diopters.
- Astigmatism up to -3.00 diopters.
- Stable refraction.