

STUDY ON SOME SOURCES OF NITRATE POLLUTION IN WATER USING NITROGEN-15 ISOTOPE TECHNIQUE

A Thesis Submitted in partial Fulfillment For the requirements of the Degree of M.Sc in Chemistry

BY Rasha Abd Allah Hussein

To
The Department of Inorganic and Analytical
Chemistry
University College for Women
(Art, Science and Education)
Ain Shams University

2005

Approval Sheet

Name: Rasha Abd Allah Hussein

Title:

Study on some sources of nitrate pollution in water using nitrogen-15 isotope technique

Approved by

Prof. Dr. Mona Abd El Aziz

Prof. of Analytical Chemistry
Chemistry Department
Faculty of Girls- Ain Shams University

Prof. Dr. Aly Islam M. Aly

Prof. of Chemical Engineering

President of Atomic Energy Authority

Dr. Mona Abbas Ahmed

Dr. of Chemical Engineering Atomic Energy Authority

Head of Chemistry Department

Prof. Dr. Nadia G. Kandile

بِسْمِ اللهِ الرَّحَمَٰنِ الرَّحِيمِ

Will Study Jack High

Acknowledgment

The author expresses her deep gratitude to **Prof. Dr.**Mona Abd El Aziz Prof. of Analytical ChemistryDepartment of Chemistry, Faculty of Girls- Ain Shams
University for supervising this thesis and here continuous
interest.

The author wishes to express her greatest appreciation and deepest gratitude for **Prof. Dr. Aly Islam M. Aly** Prof. of Chemical Engineering, President of Atomic Energy Authority for planning and supervising this thesis, effective guidance and valuable discussion.

Sincere and deep thanks to **Dr. Mona Abbas Ahmed** Dr. of Chemical Engineering Atomic Energy Authority for her fruitful discussion, continuous help during all the stages of the development of the work.

The author is deeply indebted to **Dr. Sawsan G. Abd El –Samie,** Asst.Prof. of Isotope Hydrology, National Centre for Nuclear Safety and Radiation Control, Atomic Energy Authority for her help in discussion and isotopic analysis.

Special gratitude is expressed to **Dr. Mostafa. A.Sadek,** Asst. Prof. of Isotope Hydrology, National Centre for Nuclear Safety and Radiation Control, Atomic Energy Authority for helping in the geological aspects and his advice.

Great thanks to **Technician Abdel -Aal, A.** Siting & Environmental Department, National Centre for Nuclear Safety and Radiation Control, Atomic Energy Authority for

continuous helping and submission of all facilities during the work.

The author likes also to express her deep thanks to all the staff members of Siting & Environmental Department, National Centre for Nuclear Safety and Radiation Control, Atomic Energy Authority and Central laboratory staff of Desert Research Center (DRC) for their sincere helps, Facilities provided and cooperation.

Finally, the author would like to thank her parents, family and special thanks to her husband and young son for care, support and encouragement.

Abstract

STUDY ON SOME SOURCES OF NITRATE POLLUTION IN WATER USING NITROGEN -15 ISOTOPE TECHNIQUE By

Rasha Abd Allah Hussein

FACULTY OF GIRLS AIN SHAMS UNIVERSITY, 2005

The aim of this thesis is to establish the effectiveness and applicability of using nitrogen isotope analysis method combined with environmental isotopes and hydrochemical techniques to help tracing sources and fate of nitrate contamination found in surface and groundwater at the north-eastern part of Cairo.

The study area is bounded by latitudes 30° 8′ 24″ - 30° 15′ 00″ N and longitudes 31° 17′ 30″ - 31° 26′ 24″ E. It is cultivated land and dense populated area. About 50 surface and groundwater samples as well as 15 surface soil samples were collected from the study area beside the principal nitrate sources that are likely to impact groundwater quality.

Surface and groundwater samples were found to suffer from high TDS, nitrate, phosphate, trace elements contents especially at the north-eastern part and at the southern part of the study area. Soil samples show increased trace elements and total nitrogen contents due to prolonging sewage water irrigation since 1915 especially at El- Gabal El-Asfar farm and at the northern part of the study area.

Results of environmental isotopes of $\delta^{18}O$ and $\delta^{2}H$ for groundwater samples mainly reflect the value of Nile water. Most of them are enriched than that of Nile River due to recycling of water used for irrigation. Others are depleted and could be attributed to mixing with Nile water, infiltrated before the construction of Aswan High Dam, having more depleted isotopic content than the present Nile water.

The nitrogen-isotope analyses of nitrate in water samples indicate that the source yielding lower nitrate concentrations could be commercial fertilizers or nitrifying soil organic nitrogen which is more pronounced at the western part. In the north-eastern part other sources being responsible for the higher nitrate concentrations appears to be mixing with sewage or manure and ammonium phosphate fertilizer. This mixing process has a major effect in lowering the $\delta^{15}N$ value of nitrate in this part.

At the southern part of the study area. The denitrification process is controlling nitrate levels where the loss of NO_3^- can result in a marked enrichment in the $\delta^{15}N$ content of the remaining NO_3^- .

One sample represents a contribution from a local source of human activity such as septic tanks located at the north-eastern part of the study area.

The $\delta^{15}N$ results included a wide range of values, which suggested different nitrogen sources in different parts of the study area. Nitrogen isotope technique offers a direct means of source identification because different sources of nitrate often have isotopically distinct nitrogen isotopic composition.

List of Contents

List of Tables List of Figures List of Symbols and Abbreviations Acknowledgments Abstract		Page V VII XI XII XIV	
	CHAPTER (1) INTRODUCTION AND REVIEW OF LITERATURE		
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Introduction Nitrates and human health Sources of Nitrate in Groundwater Scope of the Work Location and Description of the Study Area Methodology and Techniques Sampling Techniques Literature Review and previous Work	1 3 4 6 8 8 11 12	
G	CHAPTER (2) EOLOGICAL HYDRO-GEOLOGICAL SET	TING	
2.1 2.2	Introduction Geological Setting 2.2.1 Geo-morphological aspects 2.2.2 Stratigraphic succession a- Quaternary deposits b- Tertiary deposits	22 22 22 24 27 27 29	
2.3	2.2.3 Geologic Structure	29 29	

		Page
	2.3.1 Groundwater conditions	30
	2.3.2. Aquifer types and extensions	30
	a- Upper aquifer	31
	b- Lower aquifer	31
	2.3.3 Groundwater flow and fluxes	32
	2.3.4 Recharge and Discharge	33
	CHAPTER (3)	
	HYDROCHEMISTRY AND WATER QUAL	ITY
3.1	Introduction	34
3.2	Major inorganic constituents of water	35
3.3	Results and discussion	36
	3.3.1 Total Dissolved Solid (TDS)	42
	3.3.2 Major Ion Distribution	43
	3.3.3Hydrochemical formula and water type	56
	3.3.4 Ion Ratios	59
	3.3.5Graphical presentation of the	
	Hydrochemical Data	65
	a-Bar Graph and Hypothetical Salt	
	Combinations	65
	b- Trilinear Diagram (Piper Diagram)	69
	c- Sulin Diagram	70
3.4	Water quality	73
	3.4.1 Water quality for drinking purposes	73
	3.4.2 Water quality for domestic purposes	75
	3.4.3 Water quality for Agricultural purpose	78
	a- Total Dissolved Solids (TDS)	78
	b- Sodium Adsorption Ratio (SAR)	79
	c- Percentage Sodium (Na %)	81
	d- Residual Sodium Carbonate (RSC)	82
	3.4.4 Water quality for Industrial purposes	84

		Page	
3.5	Environmental Sources of Pollution	8:	5
	3.5.1 Nutrients		5
	a- Nitrogen Compounds	8:	5
	b- Phosphorus Compounds	8'	7
	3.5.2 Trace elements	89	9
	CHAPTER (4)		
	ASSESSMENT OF SOIL POLLUTION	N	
4.1	Introduction		2
4.2	Methods of Soil Chemical Analysis	11	4
	4.2.1 Measurements of Major Ions	11	4
	4.2.2 Measurements of Heavy Metals	11	5
	4.2.3 Measurement of Inorganic Nitrogen	11	5
	a- Extraction of ammonium and nitrate-	11	5
	b- Separation of ammonium and nitrate	in	
	water and soil extracts (Vacuum		
	Distillation Method)	11	6
	4.2.4 Determination of Total Nitrogen by		
	Kjeldahl Method		8
4.3	Results and Discussion	12	20
	CHAPTER (5)		
	ENVIRONMENTAL ISOTOPES IN	J	
	HYDROGEOLOGY		
5.1	Introduction	13	32
5.2	Main Environmental Isotopes	13	32
	5.2.1 Stable Isotopes in Meteoric Waters	13	36
	5.2.2 Stable Isotopes in Groundwater	13	37
	5.2.3 Tritium in the Hydrological Cycle	13	88
5.3	Recharge from the Nile River-Connect		
	Aquifer		39
5.4	Results and Discussion	14	10

	Page
5.4.1Stable Isotopes in Surface and Ground-	
water	141
a- Canals water	141
b- Drains water	141
c- Groundwater	141
5.4.2 Tritium in Surface and Groundwater	145
CHAPTER (6)	
NITROGEN ISOTOPE	
6.1 Introduction	147
6.2 Nitrogen cycle	149
6.3 Fundamentals of Nitrogen – 15 Isotopes	156
6.4 Conversion of Ammonium Sulphate to	
Nitrogen gas for isotopic analysis	161
6.5 Results and discussion	164
Appendices	
Appendix(I) Analytical Measurements of	
water samples	175
Appendix(II) Environmental Isotopes	175
Measurements	186
Summary and Conclusion	196
References	205
Arabic Abstract	203

List of Figures

Figure	Description	Page
1.1	Key map of the study area	9
1.2	Distribution of canals and drains in the study	
	area	9
2.1	Geomorphological map, Heliopolis basin, East	
	of Cairo, Egypt, (after El-Shazly et al, (1975)	23
2.2	Compiled geologyical map, Heliopolis basin,	
	Cairo-Ismailia desert road, Egypt	25
2.3	Idealized compiled stratigraphic columnar	
	section, Heliopolis basin, East of Cairo, Egypt	26
2.4	Groundwater aquifers in the study area	31
2.5	Groundwater direction flow in the study area	32
3.1	Location map of ground-and surface samples	36
3.2a	TDS distribution for surface water samples	44
3.2b	Iso-salinity (TDS) contour map in mg/L for	
	groundwater samples	44
3.3a	(Na ⁺ +K ⁺) distribution for surface water samples-	47
3.3b	Iso-contour map of (Na ⁺ +K ⁺) concentration	
	mg/L of groundwater samples	47
3.4a	Ca ²⁺ distribution for surface water samples	49
3.4b	Iso-contour map of Ca ²⁺ concentration in	
	mg/L of groundwater samples	49
3.5a	Mg ²⁺ distribution for surface water samples	51
3.5b	Iso-contour map of Mg ²⁺ concentration in	
	mg/L of groundwater samples	
3.6a	Cl distribution for surface water samples	53
3.6b	Iso-contour map of Cl ⁻ concentration in mg/L	
	of groundwater samples	
3.7a	SO ₄ ² - distribution for surface water samples	55

Figure	Description	Page
3.23a	Co ²⁺ distribution for surface water samples	99
3.23b	Iso-contour map of Co ²⁺ concentration in mg/L	
	groundwater samples	99
3.24a	Cr ³⁺ distribution for surface water samples	
3.24b	Iso-contour map of Cr ³⁺ concentration in mg/L	
	groundwater samples	101
3.25a	Cu ²⁺ distribution for surface water samples	103
3.25b	Iso-contour map of Cu ²⁺ concentration in mg/L	
	groundwater samples	
3.26a	Mn ²⁺ distribution for surface water samples	105
3.26b	Iso-contour map of Mn ²⁺ concentration in mg/L	
	groundwater samples	
3.27a	Ni ²⁺ distribution for surface water samples	107
3.27b	Iso-contour map of Ni ²⁺ concentration in mg/L	
	groundwater samples	107
3.28a	Pb ²⁺ distribution for surface water samples	109
3.28b	Iso-contour map of Pb ²⁺ concentration in mg/L	
	groundwater samples	109
3.29a	Zn ²⁺ distribution for surface water samples	111
3.29b	Iso-contour map of Zn ²⁺ concentration in mg/L	
	groundwater samples	111
4.1	Vacuum distillation line for separation	
	ammonium and nitrate	117
4.2	Distribution of soil samples around the study area	121
5.1	Relation between O-18 vs., delta D for surface	
	and groundwater samples	144
5.2	Relation between O-18 vs. d-parameter for	
	groundwater samples	145
5.3	Relation between delta O-18 and TDS for	
	groundwater samples	145
5.4	Relation between delta O-18 and tritium for	
	some groundwater samples	146

Figure	Description	Page
6.1	The Nitrogen cycle	150
6.2	Common ranges for $\delta^{15}N$ values of N	
	compounds in nature (clark,1997)	157
6.3	Various possesses affect on the enrichment of	
	δ^{15} N values(Townsend,2000)	159
6.4	Vacuum line for conversion of ammonium	
	sulphate to nitrogen gas by using lithium hypo-	
	bromite	162
6.5	Relationship between delta N-15 vs., NO ₃ -N	
	Concentration of groundwater samples	171
6.6	Relation between nitrate and chloride for	
	groundwater samples	172
6.7	Relation between nitrate and phosphate for	
	groundwater samples	173
II.1	Schematic of a gas source isotope ratio mass	
	spectrometer (IRMS), showing both continuous	
	flow and dual inlets	187
II.2	A fully automated H ₂ O/ gas phase equilibration	400
	for hydrogen and oxygen isotope analysis	189
II.3	Functional diagram of the CO ₂ / H ₂ O	
	equilibration device designed for fully	
	automatic computer-controlled reparation and	
	isotopic analysis of water samples for the same	100
11 /	stable isotopes	189
II.4	Assembly of electrolysis cells, additive funnel and electrodes	193
II.5	Device for electrolytic enrichment of tritium in	193
11.5	water samples	193
II.6	Receiving unit for the distillation of enriched	173
11.0	sample	195
II.7	Diagram of the physical and electronic	173
11./	configuration of the liquid scintillation	195
	voimbaration of the figure semination	1)