Role of Different Imaging Modalities in N-Staging of Lung Cancer

Essay
Submitted for Fulfillment of the Master Degree in Diagnostic Radiology

Ву

Sally Hosny Ahmed Hassan Tealip (M.B.B.CH. Cairo University)

Supervisors

Prof. Dr. Sahar Mostafa El-Mashad

Professor of Diagnostic Radiology Faculty of Medicine Cairo University

Dr. Ramy Edward Asaad

Lecturer of Diagnostic Radiology Faculty of Medicine Cairo University

Dr. Hisham Samir Wahba

Lecturer of Diagnostic Radiology National Cancer Institute Cairo University

> FACULTY OF MEDICINE CAIRO UNIVERSITY 2012

ABSTRAT

The aim of our study was to reach a proper algorithm for accurate nodal staging and in turn lead to a better prognostic outcome. We found that PET/CT has shown significant improvement in radiologic staging of lung cancer however, it is not enough accurate to substitute mediastinoscopy. DWIBS is an outstanding tool to identify lymph nodes, irrespective of their histological composition so it can be complimentary to nanoparticle-enhanced MRI (SPIO). The histological type of lung cancer can guide the decision to perform invasive staging.

Keywords:

Imaging Modalities- N- Staging - Lung Cancer

ACKNOWLEDGEMENT

First and foremost I thank God the most merciful who indebted me with his countless blessings.

I would like to express my special thanks and deep gratitude to Professor. Dr. Sahar El-Mashad, Professor of Diagnostic Radiology, Cairo University for her unfailing patience, tolerance, generosity and for the delightful work atmosphere she creates, besides her valuable feedback and advice.

My gratitude to my supervisors Dr. Ramy Edward, Lecturer of Diagnostic Radiology, Cairo University and Dr. Hisham Wahba, Lecturer of Diagnostic Radiology, National Cancer Institute, Cairo University for their sincere help, guidance and for the time spent on this essay.

I would like to express my deep gratitude to my professors, my colleagues, co workers and above all patients in the radiology department, National Cancer Institute.

DEDICATION

To my beloved family, for their help, support and love

Table of Contents

Acknowledgement	1
Dedication	II
Table of contents	III
List of Abbreviations	IV
List of Tables	VII
List of Figures	VIII
Introduction	1
Review of Literature	
 Anatomy and Lymphatic Drainage 	3
 Pathology of Lung Cancer 	16
 Staging of Lung Cancer 	19
- Different Imaging Modalities	35
Chest Radiograph	35
Computed Tomography	36
CT guided Biopsy	40
Virtual Bronchoscopy	44
Positron Emission Tomography	47
Integrated PET/CT	53
Magnetic Resonance Imaging	62
Endoscopic Ultrasound - FNA	72
Endobronchial ultrasound - FNA	73
Mediastinoscopy and thoracoscopy	78
Discussion	79
Conclusion	93
References	96
Arabic Summary	110

List of Abbreviations

3D 3 Dimensional

3-T MRI 3 Tesla Magnetic Resonance Imaging

ACCP American Collage of Chest Physicians

AJCC American Joint Committee on Cancer

ADC Apparent Diffusion Coefficient

ALNM Axillary Lymph Node Metastases

CECT Contrast Enhanced Computed Tomography

CT Computed Tomography

DWIBS Diffusion Weighted whole Body Imaging with Background Suppression

EBUS Endobronchial Ultrasound

EUS Esophageal endoscopic ultrasound

FDG Fluorodeoxyglucose

FNA Fine Needle Aspiration

FSE Fast Spin Echo

H & E Hematoxylin & Eosin

IASLC International Association of the Study of Lung Cancer

IV Intravenous

IHC Immunohistochymistry

MDCT Multi-detector Computed Tomography

MION Monocrystalline Iron Oxide Nanoparticle

MRI Magnetic Resonance Imaging

N Nodal

NPV Negative Predictive Value

NSCLC Non small cell lung cancer

PCR Polymerase Chain Reaction

PET Positron Emission Tomography

PET/CT Positron Emission Tomography and Computed Tomography

PPV Positive predictive value

ROC Receiver operating characteristic

SUV Standard Uptake Value

SPIO Superparamagnetic Iron Oxide

SSPIO Standard Superparamagnetic Iron Oxide

STIR Short Time Inversion Recovery

TBNA Transbronchial Needle Aspiration

TEMLA Transcervical extended mediastinal lymphadenectomy

TNM Tumor, Node, Metastases

TTNA Transthoracic needle aspiration

UICC Union of International Cancer Control

US Ultrasound

USPIO Ultrasmall Superparamagnetic Iron Oxide

VATS Video Assisted Thoracoscopic Surgery

List of Tables

Table	Page
Table 1. IASLC Anatomic Definitions for Lymph Node Stations	9
Table 2. Descriptors from the 7th edition of the TNM staging system for lung cancer	20
Table 3. Stage Groupings in the 6th and 7th Editions of the TNM Staging System for Lung Cancer	25
Table 4. Integrated PET/CT sensibility and specificity.	83
Table 5. Strengths and weaknesses of common mediastinal staging procedures	93

List of Figures

	Figure	Page
Fig.1	Diagrams of the axial anatomy of the chest show the lymph nodes and drainage pathways for lung cancer in different lobes of the lung.	4
Fig 2.	Lymphatic vessels from the lungs. Connections with the thoracic duct.	5
Fig. 3	The Naruke lymph node map for the staging of lung cancers as recommended by the Japan Lung Cancer Society.	7
Fig. 4	The Mountain-Dresler modification of the lymph node map originally proposed by the American Thoracic Society.	8
Fig. 5	Diagram illustrating stations 1, 2R, 2L & 4R	9
Fig. 6	CT scan showing on the left a station 2 node in front of the trachea, i.e. a 2R-nodeThere is also a small prevascular node, i.e. a station 3A node	9
Fig. 7	Diagram illustrating station 3 nodes	10
Fig. 8	A 3a node in the prevascular space	10
Fig. 9	Diagram illustrating stations 4R & 4L	11

Fig.10	CT image at the level of the lower trachea just above the carina	11
Fig.11	CT image just above the level of the pulmonary trunk	11
Fig.12	Diagram illustrating stations 5 & 6	12
Fig.13	CT image showing 4R paratracheal nodes	12
Fig.14	CT image showing station 7 subcarinal node	13
Fig.15	CT image showing a station 8 node	13
Fig 16	CT image showing station 9 nodes	14
Fig.17	CT image showing station 10	14
Fig.18	Pathology of squamous cell carcinoma	16
Fig.19	Pathology of adenocarcinoma	17
Fig.20	Pathology of large cell undifferentiated carcinoma.	17
Fig.21	Pathology of oat cell carcinoma.	17

Fig.22	Metastatic lymph node showing adenocarcinoma	18
Fig.23	Diagram illustrates the key changes to the T and M descriptors in the TNM-7 system	22
Fig.24	Stage N1 Lymph nodes	23
Fig.25	Stage N2 Lymph nodes	24
Fig.26	Stage N3 Lymph nodes	24
Fig.27	Reference diagrams for 2009 TNM staging system of lung cancer	26
Fig.28	Stage IA-(T1aN0)	27
Fig.29	Stage IIA- (T1aN1)	27
Fig.30	Stage IIIA- (T1aN2)	28
Fig.31	Stage IIIB-(any T N3-contra)	28
Fig.32	IIIB-(any T N3-supraclav)	29
Fig.33	Skip metastasis	29

Fig.34	Metastatic adenocarcinoma of the lung with uncommon nodal dissemination in 60-year old man	31
Fig.35	Metastatic adenocarcinoma of the lung with uncommon nodal dissemination in 57-year old man	3
Fig.36	Lymph nodes in the mediastinum can be recognized easily with CT and present as sharply defined intermediate density opacities	37
Fig.37	False-negative transversal short axis. True positive coronal surface	38
Fig.38	Two patients with non-small cell lung cancer	39
Fig.39	Parasternal approach of CT guided biopsy	41
Fig.40	Paravertebral approach of CT guided biopsy	41
Fig.41	Semicoronal CT scan showing the suprasternal approach	43
Fig.42	Transpulmonary approach	44
Fig.43	Virtual bronchoscopy	44
Fig.44	Virtual PET/CT broncoscopy	46

Fig.45	Normal mediastinum on a computed tomographic scan in the patient with positive subcarinal nodes identified by positron emission tomography	48
Fig.46	Positron emission tomographic image demonstrating [2-18Flfluoro-2-deoxY-D-glucose uptake in both the primary tumor and subcarinal lymph nodes	48
Fig.47	46-year-old man with adenocarcinoma in right lower lobe and metastasis in right paratracheal lymph node.	49
Fig.48	. CT (A), PET (B), and fused PET/CT (C) images of patient with lung cancer.	53
Fig.49	True negative at FDG PET and false positive at CT	54
Fig.50	True-negative finding at combined PET-CT	55
Fig.51	True positive at FDG PET and false negative at CT	56
Fig.52	True-positive finding at CT, FDG PET, and combined PET-CT	57
Fig.53	False-positive finding at combined PET-CT	60
Fig.54	Drawings show four types of lymph nodes on T2-weighted fat-suppressed MR images.	63
Fig.55	Coronal maximum intensity projection DWIBS image (inverted black-and-white gray scale)	66

	T	
Fig.56	A 60 years old man with lung adenocarcinoma and metastasis in mediastinal lymph node 3 in pretracheal area	69
Fig.57	A 36 years old man with sarcoidosis	69
Fig.58	Positive ipsilateral hilar nodal metastasis but negative subcarinal nodal metastasis	70
Fig.59	Positive ipsilateral mediastinal nodal metastasis in 44-year- old man with stage T2 squamous cell carcinoma in right lower	71
Fig.60	Aortopulmonary window lymph node seen with curvilinear echoendoscope.	73
Fig.61	EUS particularly provides access to nodes in the lower mediastinum (station 7,8 and 9)	73
Fig.62	View of pretracheal lymph node with convex array endobronchial echoendoscope	74
Fig.63	A representative case of a false-negative mediastinal PET/CT scan finding, with mediastinal metastases detected by EBUS-TBNA	76
Fig.64	CT scan guided bronchoscopy with FNA of a lymph node	77
Fig.65	Nodal stations that can be biopsied by cervical mediastinoscopy	78