

Faculty of Girls for Art, Science and Education Ain Shams University

ELECTRON TRANSPORT PROPERTIES IN SEMICONDUCTOR AT HIGH ELECTRIC FIELDS

By
Basma Mohamed Osama El-Assy

Thesis

Submitted for M.Sc.

Degree in Solid State Physics

To

Physics Department
Faculty of Girls for Art, Science and Education,
Ain Shams University

B.Sc. in Physics, 2006

Supervisors

Prof. Dr. **Amira Zaky Dakrory**

Assist. Prof. Dr.

Fadl Allah Mohammed Abul-Ela

Department of Physics,
Faculty of Girls,
Ain Shams University, Cairo, Egypt

Department of Physics, Faculty of Girls, Ain Shams University, Cairo, Egypt

Faculty of Girls for Art, **Science and Education Ain Shams University**

Student Name:

Approval sheet

Student Name:	Basma Mohamed Osama El-Assy "B.Sc. in Physics, 2006".
Thesis Title:	Electron Transport Properties in Semiconductor at high electric fields Submitted for M.Sc. Degree in Solid State Physics.
Supervisors Comm	ittee:
Department Faculty of G	·
Department Faculty of G	•
Date of research: Post Graduate Stu Approval Stamp	
Faculty Council A Date: /	oproval University Council Approval / Date: / /

Acknowledgment

In the name of Allah, most gracious, most merciful.

"And say: Work (righteousness): Soon will Allah observe your work, and his messenger and the believers "

All praise and glory to Allah the almighty who alone made this small objective to be accomplished. I feel honored and privileged to glorify his name in the sincerest way through this small accomplishment and ask him to accept my effort. Peace be upon the prophet, his companies and all who followed him until the Day of Judgment.

My deep appreciation goes to my thesis advisors *Prof. Dr. Amira Zaky Dakrory* and *Assist. Prof. Dr. Fadl Allah Mohammed Abu El-Ela* for their constant help, guidance and the countless hours of attention they devoted throughout the work of the master. Their priceless suggestions made this work interesting and learning for me. I'm especially thankful and grateful to my thesis committee member *Prof. Dr. Mohamed Mahmoud El-Okr* for his guidance in performing the dynamic analysis and *Prof. Dr. Mohamed Sherif Yehia* for his useful comments on the research and review of the thesis. I would like also to place on my record my great appreciation to all my faculty members and my colleagues who helped throughout my study.

Acknowledgment is due to Physics department, Faculty of Girls for Art, Science and Education, Ain Shams University For extending facilities and support to this research work.

I wish to express my heartfelt gratitude to my parents for their encouragement, constant prayers and continuing support. I owe a lot of thanks to my dear husband and my two kids for their extra patience and motivation. Thanks are due to my brother who helped me in preparing the manuscript.

Table of Contents

ACKNOWL	EDGMENT	I
TABLE OF C	ONTENTS	II
LIST OF FIG	URES	V
LIST OF TAB	LES	XI
ABSTRACT .		XII
INTRODUCT	TION	XIV
1.1. Intro 1.2. The 1.3. Solu 1.4. Ban 1.4.1. 1.4.2. 1.5. Simp	1, Transport Theory aduction	
2.1. Intro 2.2. Scar 2.3. Scar 2.3.1. 2.3.2.	Lattice Vibrations: Phonon scattering	23242626
2.3.3.	Non-equivalent Intervalley Phonon Scattering	31

	2.3.4.	Equivalent Intervalley Scattering	33
	2.3.5.	Acoustic Scattering	
	2.3.6.	Piezoelectric Scattering	36
	2.3.7.	Ionized Impurity Scattering	36
	-	3, The Monte Carlo Method	
3.		oduction	
3.		ory	
3.		Monte Carlo Simulation	
3.	4. Moi	nte Carlo Simulation procedures	
	3.4.1.	Initial conditions of motion	
	3.4.2.	Determination of the free flight time	
	3.4.3.	Selection of a scattering mechanism	
	3.4.4.	Determination of the electron wave vector after the Sco	_
	3.4.5.	Collecting the average transport quantities	62
	3.4.6.	Ensemble Monte Carlo	
3.	5. Sen	niconductors that can be modeled	65
3.	6. Sim	ulation parameters	66
	3.6.1.	Simulation input parameters	66
	3.6.2.	Simulation output parameters	66
	3.6.3.	Derived Output Parameters	66
4.	•	4, Results and Discussion	
4.		oduction	
4.	2. Ga	As	
	4.2.1.	Steady-State Electron Transport	
	4.2.2.	Effect of impurity scattering on the electron transport	
4.			
	4.3.1.	Steady-State Electron Transport	
	4.3.2.	Effect of impurity scattering on the electron transport	
4.		nAs	
	4.4.1.	Steady-State Electron Transport	
	4.4.2.	Effect of impurity scattering on the electron transport	
4.	5. InN		
	4.5.1.	Steady-State Electron Transport	
	4.5.2.	Effect of impurity scattering on the electron transport	129
CO	NCLUSI	ON	135

REFERENCES	138
SLIMMARY IN ARARIC	

List of Figures

Figure 1.1. The Fermi function3
Figure 1.2. Zincblende First Brillouin Zone
Figure 1.3. (a) Spherical constant energy surface for the lowest Γ
minimum of the CB in GaAs in the BZ1 [Shur- 1990]. (b) Energy
surface contours in the L valley [Antoncik-1973]. (c) Energy surface
contours in the X valley [Antoncik- 1973]10
Figure 1.4. Standard Three valley model11
Figure 1.5. Wurtzite First Brillouin Zone11
Figure 1.6. Empirical pseudopotential calculation of the electronic
bandstructure in Si (left panel) and wurtzite GaN (right panel)14
Figure 1.7. Types of scattering mechanisms15
Figure 1.8. Intravalley and Intervalley scattering
Figure 2.1. Schematic representation of the electron conservation
momentum in Impurity Scattering [Ridley-1988]38
Figure 2.2.(a,b,c,d) The scattering rates of GaAs, InP, GalnAs and InN
respectively in the Γ valley for elastic scattering mechanisms41
Figure 2.3.(a,b,c,d) The scattering rates of GaAs, InP, GalnAs and InN
respectively in the Γ valley for inelastic scattering mechanisms42
Figure 2.4.(a,b,c,d) The scattering rates of GaAs, InP, GalnAs and InN
respectively in the L valley for elastic scattering mechanisms43
Figure 2.5.(a,b,c,d) The scattering rates of GaAs, InP, GalnAs and InN
respectively in the L valley for inelastic scattering mechanisms44
Figure 2.6.(a,b,c,d) The scattering rates of GaAs, InP, GalnAs and InN
respectively in the X valley for elastic scattering mechanisms45
Figure 2.7.(a,b,c,d) The scattering rates of GaAs, InP, GalnAs and InN
respectively in the X valley for inelastic scattering mechanisms46
Figure 3.1. Flowchart of a typical Monte Carlo program [Jacoboni
&Lugli-1989]52
Figure 3.2. Diagram showing the selection of the scattering process.
There are m real processes. The dummy Self Scattering process (m+1)
makes the total scattering rate equal to the constant Γ . The value of
r ₂ is selecting process number 3 [Hockney & Eastwood-1981]59
Figure 3.3. Representation for the electron coordinates

Figure 3.4. Ensemble Monte Carlo simulation in which a time step, Δt ,
is introduced over which the motion of particles is synchronized. The
sign ≯represent scattering event65
Figure 4.1. The total electron drift velocity and average velocity
versus electric field in the Γ (0), L (1) and X (2) valleys at 300 K of
GaAs74 Figure 4.2. The total electron drift velocity versus electric field in GaAs
Figure 4.2. The total electron drift velocity versus electric field in GaAs
at 77 K, 150 K, 300 K and 500 K74
Figure 4.3. The total electron drift mobility and average mobility versus
electric field in the Γ (0), L (1) and X (2) valleys at 300 K of GaAs76
Figure 4.4. The total electron drift mobility versus electric field in GaAs
at 77 K, 150 K, 300 K and 500K76
Figure 4.5. The total electron energy and the mean energy
contribution due to the $\Gamma(0)$, L (1)and X(2) valleys at 300 K in GaAs.77
Figure 4.6. The total electron energy versus electric field in GaAs at 77
K, 150 K, 300 K and 500K78
Figure 4.7. The average effective mass in the central Γ valley(0) and
the upper valleys(1,2) as a function of electric field79
Figure 4.8. The average effective mass versus electric field in the Γ
valley at 77 K, 150 K, 300 K and 500 K79
Figure 4.9. The average fractional number of the three lower valleys
as a function of applied electric field80
Figure 4.10 . The fractional number of electrons in the Γ valley at 77 K,
150 K, 300 K and 500 K81
Figure 4.11. (a,b,c,d.) The total electron drift velocity versus electric
field at 77 K, 150 K, 300 K and 500 K respectively in GaAs at different
impurity concentrations84
Figure 4.12. (a,b,c,d.) The total electron drift mobility versus electric
field at 77 K, 150 K, 300 K and 500 K respectively in GaAs at different
impurity concentrations85
Figure 4.13. (a,b,c,d.) The total electron energy versus electric field at
77 K, 150 K, 300 K and 500 K respectively in GaAs at different impurity
concentrations86
Figure 4.14. (a,b,c,d.) The average effective mass of Γ valley versus
electric field at 77 K, 150 K, 300 K and 500 K respectively in GaAs at
different impurity concentrations87

Figure 4.15. (a,b,c,d.) The average fravtional number of Γ valley
versus electric field at 77 K, 150 K, 300 K and 500 K respectively in
GaAs at different impurity concentrations88
Figure 4.16. The total electron drift velocity and average velocity
versuse electric field in the Γ (0), L (1) and X (2) valleys at 300 K of InP
Figure 4.17. The total electron drift velocity versus electric field in InP
at 77 K, 150 K, 300 K and 500 K91
Figure 4.18. The total electron drift mobility and average mobility
versus electric field in the Γ (0), L (1) and X (2) valleys at 300 K of InP.92
Figure 4.19. The total electron drift mobility versus electric field in InP
at 77 K, 150 K, 300 K and 500K93
Figure 4.20. The total electron energy and the mean energy
contribution due to the $\Gamma(0)$, L (1)and X(2) valleys at 300 K in InP94
Figure 4.21. The total electron energy versus electric field in InP at 77
K, 150 K, 300 K and 500K95
Figure 4.22. The average effective mass in the central Γ valley (0) and
the upper valleys(1,2) as a function of electric field in InP96
Figure 4.23. The average effective mass versus electric field in the $\boldsymbol{\Gamma}$
valley at 77 K, 150 K, 300 K and 500 K in InP97
Figure 4.24. The average fractional number of the three lower valleys
as a function of applied electric field in InP98
Figure 4.25 . The fractional number of electrons in the Γ valley at 77 K,
150 K, 300 K and 500 K in InP99
Figure 4.26. (a,b,c,d.) The total electron drift velocity versus electric
field at 77 K, 150 K, 300 K and 500 K respectively in InP at different
impurity concentrations102
Figure 4.27. (a,b,c,d.) The total electron drift mobility versus electric
field at 77 K, 150 K, 300 K and 500 K respectively in InP at different
impurity concentrations103
Figure 4.28. (a,b,c,d.) The total electron energy versus electric field at
77 K, 150 K, 300 K and 500 K respectively in InP at different impurity
concentrations104
Figure 4.29. (a,b,c,d.) The average effective mass of Γ valley versus
electric field at 77 K, 150 K, 300 K and 500 K respectively in InP at
different impurity concentrations105

Figure 4.30. (a,b,c,d.) The tractional electron number versus electric
field at 77 K, 150 K, 300 K and 500 K respectively in the Γ valley of \mbox{InP}
at different impurity concentrations106
Figure 4.31. The total electron drift velocity and average velocity
versus electric field in the Γ (0), L (1) and X (2) valleys at 300 K of
GalnAs
Figure 4.32. The total electron drift velocity versus electric field in
GalnAs at 77 K, 150 K, 300 K and 500 K109
Figure 4.33. The total electron drift mobility and average mobility
versus electric field in the Γ (0), L (1) and X (2) valleys at 300 K of GalnAs
Figure 4.34. The total electron drift mobility versus electric field in
GalnAs at 77 K, 150 K, 300 K and 500K110
Figure 4.35. The total electron energy and the mean energy
contribution due to the $\Gamma(0)$, L (1) and X(2) valleys at 300 K in GalnAs
Figure 4.36. The total electron energy versus electric field in GalnAs at
77 K, 150 K, 300 K and 500K111
Figure 4.37. The average effective mass in the central Γ valley(0) and
the upper valleys(1,2) as a function of electric field in GalnAs112
Figure 4.38. The average effective mass versus electric field in the Γ
valley at 77 K, 150 K, 300 K and 500 K in GalnAs113
Figure 4.39. The average fractional number of the three lower valleys
as a function of applied electric field in GalnAs114
Figure 4.40 . The fractional number of electrons in the Γ valley at 77 K,
150 K, 300 K and 500 K in GalnAs114
Figure 4.41. (a,b,c,d.) The total electron drift velocity versus electric
field at 77 K, 150 K, 300 K and 500 K respectively in GalnAs at different
impurity concentrations116
Figure 4.42. (a,b,c,d.) The total electron drift mobility versus electric
field at 77 K, 150 K, 300 K and 500 K respectively in GalnAs at different
impurity concentrations117
Figure 4.43. (a,b,c,d.) The total electron energy versus electric field at
77 K, 150 K, 300 K and 500 K respectively in GalnAs at different
impurity concentrations118

Figure 4.44. (a,b,c,d.) The average effective mass of Γ valley versus
electric field at 77 K, 150 K, 300 K and 500 K respectively in GalnAs at
different impurity concentrations119
Figure 4.45. (a,b,c,d.) The fractional electron number versus electric
field at 77 K, 150 K, 300 K and 500 K respectively in the Γ valley of
GalnAs at different impurity concentrations120
Figure 4.46. The total electron drift velocity and average velocity
versus electric field in the Γ_1 (0), Γ_3 (1) and M-L (2) valleys at 300 K of
InN124
Figure 4.47. The total electron drift velocity versus electric field in InN
at 77 K, 150 K, 300 K and 500 K124
Figure 4.48. The total electron drift mobility and average mobility
versus electric field in the Γ_1 (0), Γ_3 (1) and M-L (2) valleys at 300 K of
InN125
Figure 4.49. The total electron drift mobility versus electric field in InN
at 77 K, 150 K, 300 K and 500K125
Figure 4.50. The total electron energy and the mean energy
contribution due to the Γ_{1} (0), Γ_{3} (1) and M-L (2) $$ valleys at 300 K in InN
126
Figure 4.51. The total electron energy versus electric field in InN at 77
K, 150 K, 300 K and 500K126
Figure 4.52. The average effective mass in the central Γ_1 valley(0) and
the upper valleys(1,2) as a function of electric field in InN127
Figure 4.53. The average effective mass versus electric field in the Γ_1
valley at 77 K, 150 K, 300 K and 500 K in InN127
Figure 4.54. The average fractional number of the three lower valleys
as a function of applied electric field in InN128
Figure 4.55 . The fractional number of electrons in the Γ_1 valley at 77 K,
150 K, 300 K and 500 K in InN
Figure 4.56. (a,b,c,d.) The total electron drift velocity versus electric
field at 77 K, 150 K, 300 K and 500 K respectively in InN at different
impurity concentrations
Figure 4.57. (a,b,c,d.) The total electron drift mobility versus electric
field at 77 K, 150 K, 300 K and 500 K respectively in InN at different
impurity concentrations131

Figure 4.58. (a,b,c,d.) The total electron energy versus electric field at
77 K, 150 K, 300 K and 500 K respectively in InN at different impurity
concentrations132
Figure 4.59. (a,b,c,d.) The average effective mass of Γ_1 valley versus
electric field at 77 K, 150 K, 300 K and 500 K respectively in InN at
different impurity concentrations133
Figure 4.60. (a,b,c,d.) The fractional electron number versus electric
field at 77 K, 150 K, 300 K and 500 K respectively in the Γ_1 valley of lnN
at different impurity concentrations134

List of Tables

Table 3.1. MOCASIM input parameters	66
Table 3.2. MOCASIM output parameters	66
Table 3.3. MOCASIM derived output parameters	66
Table 4.1. The material parameter selections corresponding to	
zincblende GaAs, InP and GalnAs and bulk wurtzite InN	70
Table 4.2. The valley parameter selections corresponding to	
zincblende GaAs, InP and GalnAs and bulk wurtzite InN	72