

Faculty of Engineering

A Thesis Submitted for the Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY IN CIVIL ENGINEERING (STRUCTURAL ENGINEERING)

Entitled

STATIC AND DYNAMIC NONLINEAR ANALYSIS OF FRAMES WITH SEMI-RIGID JOINTS

By

ENG. TAREK MOHAMADY ABD-ELHAMID KHALIFA

Assistant Lecturer, Faculty of Engineering, Tanta University
M. Sc. Structural Engineering, Monofia University, 1997
B. Sc. Civil Engineering "Distinction with Honor Degree", Monofia University, 1991

Under the Supervision of

Prof. Dr. MOHAMED A. KASSEM

Prof. Dr. MOHAMED A. DABAON

Prof. of Structural Analysis.
Structural Engineering Dept.
Ex-Dean of Faculty of Engineering
Tanta University

Prof. of structures and steel bridges Structural Engineering Dept. Vice-Dean of Faculty of Engineering Tanta University

Prof. Dr. SAHER R. EL-KHORIBY

Professor of Structural Analysis Structural Engineering Dept. Faculty of Engineering Tanta University

2008

Faculty of Engineering

A Thesis Submitted for the Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY IN CIVIL ENGINEERING (STRUCTURAL ENGINEERING)

Entitled

STATIC AND DYNAMIC NONLINEAR ANALYSIS OF FRAMES WITH SEMI-RIGID JOINTS

By

ENG. TAREK MOHAMADY ABD-ELHAMID KHALIFA

Assistant Lecturer, Faculty of Engineering, Tanta University
M. Sc. Structural Engineering, Monofia University, 1997
B. Sc. Civil Engineering "Distinction with Honor Degree", Monofia University, 1991

Approved by the Advising and Examining Committee: Prof. Dr. Adel H. Salem. Examiner Prof. of Structures and Steel Bridges Ex-Dean of Faculty of Engineering - Ain Shams University (Prof. Dr. El-Sayed S. Abd El-Salam, Examiner Prof. of Structural Analysis Faculty of Engineering - Zagazig University Prof. Dr. Mohamed A. Kassem, Advisor & Examiner Prof. of Structural Analysis Ex-Dean of Faculty of Engineering - Tanta University **Prof. Dr. Mohamed A. Dabaon**, Advisor & Examiner Prof. of structures and steel bridges Vice-Dean of Faculty of Engineering -Tanta University Prof. Dr. Saher R. El-Khoriby, Advisor & Examiner Professor of Structural Analysis Faculty of Engineering -Tanta University

ACKNOWLEDGEMENTS

First words and foremost thanks to **ALLAH**, the most gracious and the most merciful.

The author like to express his gratitude to his supervisor **Prof. Dr. MOHAMED A. KASSEM** not only for his guidance to this research, but also for his support in certain critical situations. I benefited not only from his experience and insight in the research area I worked on, but also from the trust he placed on me.

His supervisor **Prof. Dr. MOHAMED A. DABAON** has had a substantial input toward the completion of this thesis. The author is grateful to him for the cut-out time although his responsibilities. He spent refining manuscripts and discussing the subject with me. His constant guidance, generous help and precious advice have truly helped in bringing this work to successful end and valuable appearance.

The author would like to express his sincere appreciation, gratitude and special thanks to his supervisor **Prof. Dr. SAHER R. EL-KHORIBY** for his valuable guidance, generous help, support and encouragement throughout the whole period of this research. I am also grateful to him for the reference that he provided me and for his subtle appreciation of his work.

Very special thanks are also due to **Prof. Dr. ABD ELHAKIM A. KHALIL,** Head of Civil Engineering Dept. for his great co-operation, persistent help and kind advice. Also, very special thanks for his brother **Dr. MOHAMED A. SAKR** for his support and encouragement and help during the period of research.

The author would like also to acknowledge gratefully **Dr. EZZAT SHOWAIB** for his significant assistance in preparation of the experimental work.

Also, the author does not forget his deepest gratitude to **Engineers/ AHMED ABBAS, MOHAMED EL SHARKAWY** and **MOHAMED EL HOSSINY** for their help.

Finally, he would like to express his sincere thanks to his **FATHER**, his **MOTHER**, his **WIFE**, and his daughters **SARAH**, **RIM** and **NADA** for their support and encouragement through the course of this work.

ABSTRACT

A three-dimensional finite element model using ANSYS program (Version8) has been developed to study the response of extended endplate bolted connections to static and cyclic loading. Two models (Solid-Element model and shell-Element model) were used to simulate the entire behavior of extended endplate connections, up to the ultimate loads. The models included the individual modeling of bolts and the complex contact surfaces as well as the material nonlinearity. Also, an experimental investigation program of ten endplate joints subjected to static and cyclic loading was described and performed. A comparison between the results of the experimental tests and the results out of the suggested finite element model was performed to verify the present suggested FE model. The finite element models simulated the experimental moment-rotation behavior of the connections well in the cases of both static and cyclic loading, which provide the confidence to use such models in wider-range parameters. A numerical parametric study using the suggested FE model was carried out to investigate the influence of different factors on the mechanical properties of extended endplate bolted connections. Also, a regression analysis to find the analytical expression of the parameters that define the proposed momentrotation hysteretic mathematical model of the steel joint was presented. Connections represented by the proposed mathematical model (bilinear model) are incorporated in a frame analysis program. The effect of degree of semi-rigidity of frame joint under dynamic loading is demonstrated.

Keywords: Finite element modeling, steel connections, extended endplate, cyclic loading, semi-rigid steel frame, dynamic analysis, hysteretic.

SUMMARY

Steel frames are widely used in practice. This is because they meet the need to cover large spans without intermediate supports. They require small weight of structural material per unit covered area. Steel frames also provide indirect saving in fabrication, construction, and in increasing the service life of the structure. Unlike brittle materials such as concrete, steel has a high ductility and thus a stronger resistance to seismic loads. In construction of steel framed buildings, beam-to-column connections are widely used. In recent years, bolted connections, especially extended end-plate types, have increased in popularity. They have the advantages of requiring less supervision and a shorter assembly time than welded joints. Also, because of poor performance of welded-moment connections in comparison to the performance of bolted-moment connections in the 1994 Northridge earthquake and the 1995 Kobe earthquake, extended end-plate moment connections were under serious consideration as an alternative to welding in seismic regions.

For conventional analysis and design of steel framed structures, the actual response of the beam-to-column connections is simplified to either rigid or pin-connected behavior. Although the adoption of such idealized performance simplifies the analysis and design process, the predicted response of the idealized structure may be quite unrealistic compared to that for the actual structure. This is because most beam-to-column connections used in practical steel framed structures actually exhibit semi-rigid deformation behavior. This behavior can contribute substantially to overall structural deformation and to internal force redistribution in the members of structures subjected to static or dynamic loading. Evidently, then, the

neglect of real connection behavior may lead to unrealistic predictions of the stiffness and strength of steel structures. Thus, it is necessary to account for the effect of connection flexibility when designing such structures if realistic and economical designs are to be found.

A three-dimensional finite element model using ANSYS program (Version8) has been developed to study the response of extended endplate bolted connections to static and cyclic loading. Two models (Solid-Element model and shell-Element model) were used to simulate the entire behavior of extended endplate connections, up to the ultimate loads. The models included the individual modeling of bolts and the complex contact surfaces as well as the material nonlinearity. Also, an experimental investigation program of ten endplate joints subjected to static and cyclic loading was described and performed. A comparison between the results of the experimental tests and the results out of the suggested finite element model was performed to verify the present suggested FE model. The finite element models simulated well the experimental moment-rotation behavior of the connections, in the cases of both static and cyclic loading, which provide the confidence to use such models in wider-range parameters. A numerical parametric study using the suggested FE model was carried out to investigate the influence of different factors on the mechanical properties of extended endplate bolted connections. Also, a regression analysis to find the analytical expression of the parameters that define the proposed momentrotation hysteretic mathematical model of the steel joint was presented. Connections represented by the proposed mathematical model (bilinear model) are incorporated in a frame analysis program. The effect of degree of semi-rigidity of frame joint under dynamic loading is also demonstrated.

Displaying the various chapters of the thesis, the following can be detected:

In chapter (1), an introduction for the thesis was presented. Also the classification and definition of the semi rigid joints were presented. Finally, the goals and description of each chapter of the thesis were presented. In chapter (2), the important researches in semi rigid joints were reviewed to start to form their results and conclusions. In chapter (3), the finite element modeling philosophy employed to analyze extended endplate steel connections subjected to static or cyclic loading was presented. The ANSYS finite element package (version 8.0) is used to simulate the actual behavior of steel joints. Also, comparisons of the numerically predicted ultimate loads and moment rotation responses with those of the corresponding previous tests were presented. In chapter (4), a complete description of the experimental investigation program for ten endplate connections was presented. Five joints were tested under static loading and another five joints were tested under cyclic loading. All joints were tested up to failure. Also, the standard tests of the materials used and their results were detailed. Test setup and test procedure were described. In chapter (5), the experimental results of the tested joints were compared with numerical results of these joints using the suggested FE models described in chapter (3). In chapter (6), a numerical parametric study using ANSYS was carried out to investigate the influence of different geometric variables on the mechanical properties of steel joints. Also, a regression analysis to find a mathematical expression of the parameters that define the considered moment- rotation model of the steel joint was presented. In chapter (7), the results of semi- rigid frame analysis under static and seismic loading were presented. In chapter (8), a summary of the work done, main conclusions from this research and recommendation for the future work are presented.

Table of Contents

Ack	nowledgements	i
Abst	tract	ii
Sum	ımary	iii
Tabl	le of Contents	vi
List	of Figures	xi
List	of Tables	XV
List	of Notations	xvi
СН	APTER (1): Introduction	
1.1	General	1
1.2	Actual behavior of joints under static and cyclic loading	3
1.3	Joint classification	7
	1.3.1 Classification by Stiffness	7
	1.3.2 Classification by Strength	8
	1.3.3 Classification by Ductility	9
1.4	Goals and objectives of the present work	9
1.5	Methodology	10
1.6	Scope of thesis	10
СН	APTER (2): Literature Review	
2.1	Behavior of beam-to-column connection under static loads	12
2.2	Behavior of beam-to-column connections under cyclic loading	18
2.3	, c	24

CHAPTER (3): 3D FE Modeling of Extended Endplate Connection

3.1	Introduction		
3.2	Finite	element approach	28
	3.2.1	Nonlinear finite element modeling	29
		3.2.1.1 Solid element model	30
		3.2.1.2 Shell element model	40
	3.2.2	Material properties	46
	3.2.3	Restraints and loading	47
3.3	Verification of the finite element models		49
	3.3.1	Verification of the model under static loading	49
	3.3.2	Verification of the model under cyclic loading	60
3.4	Summ	ary and conclusions	63
CH	APTE	R (4): Experimental Work	
4.1	Scope	,	64
4.2	Exper	imental program	64
4.3	Description of test specimens		65
4.4	Mechanical properties of steel materials		70
4.5	Labor	ratory set-up	71
	4.5.1	Testing machine	71
	4.5.2	Testing frame	73
4.6	Testir	ng equipment and instrumentation	76
4.7	Loadi	ng history	82
4.8	Testir	ng procedure	84
4.9	Test r	esults and main observations	85
	4.9.1	Moment-rotation relationship	85
		4.9.1.1 Static tests	85

		4.9.1.2 Cyclic tests	88
	4.9.2	Value of initial stiffness, ultimate moment capacity	
		and the associated rotation capacity	91
		4.9.2.1 Static tests	91
		4.9.2.2 Cyclic tests	93
	4.9.3	Modes of Failure	98
		4.9.3.1 Static tests	98
		4.9.3.2 Cyclic tests	102
	4.9.4	Strain in beam flanges	105
		4.9.4.1 Static tests	105
		4.9.4.2 Cyclic tests	107
4.10	4.10 Cyclic and static responses		108
4.11	4.11 Summary and Conclusions		
CH	APTE	R (5): Comparison of Experimental and	
		Analytical Results	
5.1 \$	Scope		113
5.2	Comp	arison of moment-rotation relationship	113
	5.2.1	Static tests	113
	5.2.2	Cyclic tests	116
5.3	Verif	ying the results of K_i , M_u , and Φ_u	119
	5.3.1	Static tests	119
	5.3.2	Cyclic tests	122
5.4	Comp	parison of failure modes	126
	5.4.1	Static tests	126
	3.4.1	Static tests	120
		Cyclic tests	133
5.5	5.4.2		

5.5.2 Cyclic tests	141
5.6 Summary and conclusions	132
CHAPTER (6): Development of Moment-Rotation	
Hysteretic Mathematical Model	
6.1 Scope	143
6.2 Variables of parametric study	143
6.3 Parametric study program	145
6.4 Results of parametric study	149
6.5 Present mathematical model	152
6.6 Predicting parameters through regression analysis	155
6.7 Validation of parametric prediction equations	161
6.8 Summary and conclusions	163
CHAPTER (7): Seismic Analysis of Steel Frames with	
CHAPTER (7): Seismic Analysis of Steel Frames with Semi-Rigid Joints	
•	164
Semi-Rigid Joints	164 164
Semi-Rigid Joints 7.1 Scope	_
Semi-Rigid Joints 7.1 Scope 7.2 Solution method	164
Semi-Rigid Joints 7.1 Scope 7.2 Solution method 7.3 Joint element	164 165
Semi-Rigid Joints 7.1 Scope 7.2 Solution method 7.3 Joint element 7.4 Earthquake ground motion	164 165 167
Semi-Rigid Joints 7.1 Scope 7.2 Solution method 7.3 Joint element 7.4 Earthquake ground motion 7.5 Numerical examples	164 165 167 168
Semi-Rigid Joints 7.1 Scope 7.2 Solution method 7.3 Joint element 7.4 Earthquake ground motion 7.5 Numerical examples 7.6 Discussion of analytical results	164 165 167 168 172
Semi-Rigid Joints 7.1 Scope 7.2 Solution method 7.3 Joint element 7.4 Earthquake ground motion 7.5 Numerical examples 7.6 Discussion of analytical results 7.6.1 Base shear	164 165 167 168 172 172

CHAPTER (8): Summary, Conclusions, and Recommendations

8.1 Summary	188
8.2 Observations and Conclusions	190
8.3 Recommendations and future work	193
References	194
Appendix (A)	
Arabic Summary	

List of Figures

Chapter (1)		
Figure (1-1):	Rotational deformation of joint	2
Figure (1-2):	Moment – rotation (M-ø) curves of connections	6
Figure (1-3):	Stiffness classification boundaries	7
Figure (1-4):	Full-strength joints	8
Chapter (3)		
Figure (3-1):	Configuration of 3D finite-element model	29
Figure (3-2):	Solid element model of joint	30
Figure (3-3):	Solid element model of joint components	33
Figure (3-4):	Solid45 geometry	34
Figure (3-5):	CONTAC52 between endplate and column flange	35
Figure (3-6):	CONTAC52 geometry	36
Figure (3-7):	Contact pair 170,174 between bolts and plates	38
Figure (3-8):	Contact pair 170,174 geometry	39
Figure (3-9):	Shell element model of joint	40
Figure (3-10):	Shell element model of joint components	42
Figure (3-11):	SHELL43 geometry	43
Figure (3-12):	SOLID45, LINK10, and CONBIN39 used to	
	model the bolt	45
Figure (3-13):	LINK10 geometry	45
Figure (3-14):	COMBIN39 geometry	46
Figure (3-15):	Idealized nonlinear material curves used in models	47
Figure (3-16):	The loading history considered in cyclic loading	48
Figure (3-17):	Beam-to-column joint tested by Jenkins [52]	49
Figure (3-18):	Beam-to-column joint tested by Nader [70]	50
Figure (3-19):	Comparison of Solid element model and Shell	50
T: (2.20)	element model for joint J ₁	52
Figure (3-20):	Moment-rotation curves from experimental and FE	<i>-</i> 4
F! (2.21)	model for joints tested by Jenkins [52]	54
Figure (3-21):	von Mises stresses for joint J1	57
Figure (3-22):	Correlation coefficients between the experimental	5 0
E: (2.22)	and FE results	59
	Connections tested by Bernuzzi [14]	60
Figure (3-24):	Hysteretic-loop curves from experimental and FE	60
	model for connections tested by Bernuzzi [14]	62

Chapter (4)

Figure (4-1):	Geometry of tested joints with endplate extended	
	from both sides	66
Figure (4-2):	Geometry of tested joints with endplate extended	
	from one side	66
Figure (4-3):	Details of test specimens	68
Figure (4-4):	Workshop drawing of test specimens	69
Figure (4-5):	Standard tensile testing machine	70
Figure (4-6):	Standard Specimen	70
Figure (4-7):	Photo of Testing Machine	72
Figure (4-8):	Schematic of testing machine	72
Figure (4-9):	Loading frame	73
Figure (4-10):	Details of loading frame	74
Figure (4-11):	Workshop drawing of loading frame	75
Figure (4-12):	Test setup and instrumentation	77
Figure (4-13):	Schematic of test set-up and recording equipment	78
Figure (4-14):	Definition of rotations	80
Figure (4-15):	PC used to control the testing machine	81
Figure (4-16):	PC and data logger used to record the test data	81
Figure (4-17):	Determination of yield force (F _y) and displacement	
	(e_y)	82
Figure (4-18):	Loading history	83
Figure (4-19):	Moment-relative rotation curves due to static	
	loading	87
Figure (4-20):	Moment – relative rotation curves due to cyclic	
	loading	90
Figure (4-21):	Values of initial stiffness (Ki)	92
Figure (4-22):	Values of ultimate moment capacity (Mu)	92
Figure (4-23):	Values of rotation capacity (Φu)	93
Figure (4-24):	Sign convention of joint parameters	94
Figure (4-25):	Comparisons of initial stiffness (Ki)	96
Figure (4-26):	Comparisons of ultimate moment capacity (Mu)	96
Figure (4-27):	Comparisons of rotation capacity (Φu)	97
Figure (4-28):	Condition at end of tests for some joints tested	
	under static loading	101
Figure (4-29):	Condition at end of tests for some joints tested	
	under cyclic loading	104
Figure (4-30):	Tension and compression flange strains for	
	specimen SJB6	105

Figure (4-31):	Tension and compression flange strains for specimen SJB10	106
0 ,	Upper and lower flange strains for joints CJB6 Comparison between cyclic and static responses	107 110
Chapter (5)		
Figure (5-1):	M-Φ relationship for joints tested under static loading	115
Figure (5-2):	M-Φ hysteretic loops for joints tested under cyclic loading	118
Figure (5-3):	Correlation between tests and FE modeling for joints tested under static loading	121
Figure (5-4):	Correlation between tests and FE modeling for joints tested under cyclic loading for positive region	121
F: (5.5)	_	124
Figure (5-5):	Correlation between tests and FE modeling for joints tested under cyclic loading for negative region	125
Figure (5-6):	Failure modes of different joints subjected to static loading	132
Figure (5-7):	Failure modes of different joints subjected to cyclic loading	137
Figure (5-8):	Tension and compression flange strains from experimental and FE modeling for some joints tested under static loading.	140
Figure (5-9):	Upper and tower flange strains from experimental and FE modeling for joints tested under cyclic loading	141
Chapter (6)		
Figure (6-1):	General description of variables used in parametric study	144
Figure (6-2):	Bilinear mathematical model	153
Figure (6-3):	Definition of parameters in bilinear model	154
Figure (6-4):	Example of input and output of regression	157
Figure (6-5):	Scatter plot of parameters	161