NON OPIOID MANAGEMENT OF ACUTE POSTOPERATIVE PAIN

Essay

Submitted for partial fulfillment of Master Degree in Anaesthesia

By

 $\begin{tabular}{ll} Mohamed & Mohamed & Abd & El-Nabi \\ \hline & \tiny (M.B.B.Ch.) \\ \end{tabular}$

Supervised by

Prof. Dr. SOHAIR ABASS MOHAMED

Professor of Anaesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Prof. Dr. HAZEM MOHAMED ABD EL-RAHMAN

Professor of Anaesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Dr. NEVEIN GERGES FAHMY

Lecturer of Anaesthesia and Intensive Care Faculty of Medicine – Ain Shams University

Faculty of Medicine – Ain Shams University **2016**

Acknowledgments

First and foremost, I feel always indebted to **Allah**, the Most Beneficent and Merciful.

I wish to express my deepest gratitude and thanks to **Prof. Dr. Sohair Abass Mohamed,** Professor of Anaesthesia and Intensive Care, Faculty of Medicine – Ain Shams University, for her constructive criticism, unlimited help and giving me the privilege to work under her supervision.

My most sincere gratitude is also extended to **Prof. Dr. Hazem Mohamed Abd El-Rahman,** Professor of Anaesthesia and Intensive Care, Faculty of Medicine — Ain Shams University, for his enthusiastic help, continuous supervision, guidance and support throughout this work.

I can't forget to thank with all appreciation **Dr. Nevein Gerges Fahmy,** Lecturer of Anaesthesia and Intensive Care,
Faculty of Medicine – Ain Shams University, for the time and
efforts she has devoted to accomplish this work.

Last but not least, I can't forget to thank all members of my Family, especially my **Parents** and my **Wife**, for pushing me forward in every step in the journey of my life.

Candidate

Mohamed Mosaad Mohamed Abd El-Nabi

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	v
Introduction	1
Aim of the Essay	1
Chapter (1): Pathophysiology of Pain	2
Chapter (2): Non-Opioid Drugs	26
Chapter (3): Regional Anesthesia and Nerve B	lock 54
Chapter (4): New Drugs and Recent Advances	91
Summary	102
References	105
Arabic Summary	·····

List of Abbreviations

Aldr. Full-term

BP : Blood pressure

CGRP : Calcitonin gene-related peptide

COX : Cyclo-oxeginase

CPSP : Chronic postsurgical pain

DVPRS: Defense and Veterans Pain Rating Scale

FPS: Faces Pain Scale

GABA : Gamma-aminobutyric acid

HR : Heart rate

INR : International normalized ratio

nAChRs : Nicotinic acetylcholine receptors

NMDA : N -methyl- d-aspartate

NRS : Numeric Rating Scale

NSAIDs : Non-steroidal anti-inflammatory drugs

PACU: Post-Anesthetic Care Unit

PCA: Patient-controlled analgesia

PGE: Prostaglandin E

PONV: Postoperative nausea and vomting

PPP : Persistent postsurgical pain

SNRI : Serotonin–norepinephrine reuptake inhibitors

List of Abbreviations (Cont.)

Abbr. Full-term

SSRI : Selective serotinine reuptake inhibitors

SPI : Surgical Pleth Index

TCA : Tricyclic antidepressants

TCM: Traditional Chinese medicine

TENS: Transcutaneous electrical nerve stimulation

USFDA : United States Food and Drugs Association

VAS : Visual Analog Scale

VRS : Verbal Rating Scale

List of Tables

Cable No.	. Citle Page No.
Table (1):	Types of pain
Table (2):	Summary of voltage-gated ion channels and Drugs that modify their function
Table (3):	Summary of endogenous signals and drugs that target them
Table (4):	Rexed's spinal cord laminae
Table (5):	Present criteria and proposed criteria regarding PPP
Table (6):	Adverse effects of opioids29
Table (7):	List of non-opioid drugs. Data collected from
Table (8):	Summary of doses of paracetamol and NSAIDs40
Table (9):	Summary of pharmacological and clinical activities of paracetamol, selective COX-2 inhibitors and non-selective NSAIDs
Table (10):	Contraindications of neuraxial anesthesia 64
Table (11):	Upper extremity blocks 68
Table (12):	Lower extremity blocks69
Table (13):	Blocks of the trunk
Table (14):	Management of Severe Local Anesthetic Toxicity Guidelines

List of Figures

Figure No.	Citle	Page No.
Figure (1):	Acute pain pathway	11
Figure (2):	Visual analogue scale pain assetool	
Figure (3):	Pain supplemental questions u	
Figure (4):	The Defense and Veterans Pain Scale (DVPRS)	
Figure (5):	Potential risk determinants of perpostsurgical pain	
Figure (6):	Major factors involved in processing and proposed sites of non-opioid adjuvants	f action
Figure (7):	Ultrasound-guided parasacral ap	proach 70
Figure (8):	Parasacral approach	70
Figure (9):	Femoral nerve block	71
Figure (10):	Ultrasound-guided femoral nerv	e block71
Figure (11):	Transcutaneous electrical stimulation device	
Figure (12):	Electrode positions during TE painful conditions	
Figure (13):	Local anesthetic placement abdominal wall blocks	
Figure (14):	Approaches for interpectoral blo	ck 94

Introduction

espite recent advances in our understanding of the physiology of acute pain, the development of new opioid and nonopioid analgesics and novel methods of drug delivery, and more widespread use of pain-reducing minimally invasive surgical techniques, pain after surgical procedures remains a challenge for many practitioner and still 86–89% of patients experience moderate to severe pain after surgery (*Pommergaard et al., 2014*).

Postoperative pain is the result of activation of different pain mechanisms, including nociceptive, neuropathic and inflammatory pains. Likewise, periphral and central sensitization further contributes to development of hyperalgesia with increased pain as a result (*Mathiesen et al.*, 2013).

Progress in our neurobiological understanding of postoperative pain includes scientific discoveries of 'vulnerability factors', which substantially impact on the spinal cord, augmenting pain amplification mechanisms, perhaps to levels of no-return (*Deumens et al.*, 2013).

The use of opioid medications after surgery can lead to incomplete analysesia and may cause undesired side effects such as respiratory depression, somnolence, urinary retention, and nausea. Multimodal (opioid and nonopioid combination) analysesia may be an effective alternative to

morphine administration leading to improved postoperative analgesia with diminished side effects (*Ryan et al.*, 2013).

Various drugs and techniques have been used as part of multimodal analgesia with the aim of improving pain management and decreasing opioid consumption and opioid-related side-effects. Of these, the benefits of paracetamol, non-steroidal anti-inflammatory agents, and regional anesthesia techniques and because of poorly controlled pain at the time of surgery predisposes to chronic postsurgical pain (CPSP), drugs traditionally used for chronic neuropathic pain are being used more commonly in the perioperative period (*Ramaswamy et al.*, 2013).

There is increasing evidence that less invasive regional analgesic techniques are as effective as epidural analgesia. These include paravertebral block for thoracotomy, femoral block for total hip and knee arthroplasty, wound catheter infusions for cesarean delivery, and local infiltration analgesia techniques for lower limb joint arthroplasty (*Narinder*, 2012).

Therefore we need to increase our knowledge about the recent advances of non-opioid drugs, regional analgesia and pain-reducing minimally invasive surgical techniques to improve the quality of pain management of postoperative pain aiming to reduce opioid side effects and decrease the perioperative complication.

Aim of the Essay

To highlight the appropriate way to manage the postoperative pain by sparing opioid use and minimizing the incidence of systemic opioid-related side effects and accelerate postoperative convalescence and decreasing occurrence of perioperative complications.

Chapter (1) Pathophysiology of Pain

What is pain?

The International Association for the Study of Pain defines pain as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage." This definition recognizes the interplay between the objective, physiological sensory aspects of pain and its subjective, emotional, and psychological components (*Macintyre et al.*, 2010).

Optimal management of postoperative pain requires an understanding of the pathophysiology of pain, methods used for assessment of pain in individual patients, and awareness of the various options available for pain control (*Jessica*, *et al.*, 2015)

Pain may be classified according to pathophysiology (e.g., nociceptive or neuropathic pain), etiology (e.g., arthritis or cancer pain), or the affected area (eg, headache or low back pain). Table 1. Such classifications are useful in the selection of treatment modalities and drug therapy (*Richard and Bruce*, 2013).

Preoperative pain may be amplified or accelerated by surgical incision, subsequent tissue injury, pathophysiological responses and local inflammatory processes. Surgical factors contribute to the genesis of pain: intraoperative nerve damage may contribute to the severity, character and chronicity of postoperative pain (*Gerbershagen et al.*, 2010).

Preoperative pain, anxiety, young age, obesity, surgical fear, catastrophising, and type of surgery (abdominal, orthopaedic, and thoracic surgery, long duration) have been identified as predictors of postoperative pain (*Bruce et al.*, 2012).

Inadequate treatment of postoperative pain continues to be an important clinical problem, not only leading to worse outcomes in the immediate postoperative period but also an increased risk for persistent postoperative pain (*Jessica et al.*, 2015).

Table (1): Types of pain (Jessica et al., 2015)

Nociceptive Pain	Normal processing of stimuli that damages normal tissues		
Somatic	Responds to opioids Pain arises from bone, joint, muscle,		
	skin, or connective tissue Aching, throbbing Localized		
Visceral	Arises from visceral organs		
	Tumor: localized pain		
	Obstruction of hollow viscus: poorly localized		
Neuropathic Pain	Abnormal processing of sensory input by PNS or CNS		
	Deafferentation pain: injury to PNS or CNS (eg, phantom		
	pain)		
Centrally generated	Sympathetically maintained pain: dysregulation of		
	autonomic nervous system (eg, complex regional pain		
	syndrome I and II)		
Peripherally	Painful polyneuropathies: pain is felt along the distribution		
generated	of many peripheral nerves (eg, diabetic neuropathy)		
	Painful mononeuropathies: associated with a known		
	peripheral nerve injury (eg, nerve root compression,		
	trigeminal neuralgia)		

Pathophysiology of postoperative pain

Tissue trauma releases local inflammatory mediators, which can produce hyperalgesia (increased sensitivity to stimuli in the area surrounding an injury) or allodynia (misperception of pain to nonnoxious stimuli). Other mechanisms contributing to hyperalgesia and allodynia include sensitization of the peripheral pain receptors (primary hyperalgesia) and increased excitability of central nervous system neurons (secondary hyperalgesia) (*Jessica et al.*, 2015).

How can pain signal be transduced?

I. Excitation of primary afferent neurons.

When the receptors that located in the peripheral terminals of primary nociceptive neurons encounter the appropriate specific stimulus (e.g., high heat, extreme cold, chemicals, or excessive pressure) that is of sufficient intensity, the receptor molecule undergoes a conformational change that transduces the noxious signal into an electrical current by triggering the opening of depolarizing cationic ion channels or the closing of outward potassium channels (*Gold and Gebhart*, 2010).

Tissue trauma results in local release of inflammatory mediators such as bradykinins, 5-hydroxytryptamine, leukotrienes, prostaglandins (PGE2, PGG2 and PGH2), substance P and histamine which serve as activators of primary nociceptors. Several of these signaling molecules have been proposed as potential targets for pain management (*Gandhi et al.*, 2011).

If the initial signal reaches the threshold or activation potential, further conduction of the signal requires the generation of an action potential via opening of depolarizing voltage-gated calcium and sodium channels or closure of hyperpolarizing potassium channels (*Gold and Gebhart*, 2010).

Endogenous and exogenous substances that modulate the function of these ion channels can amplify or dampen transmission of the pain signal. Table 2 (*Babos et al.*, 2013).

Table (2): Summary of voltage-gated ion channels and Drugs that modify their function (*Babos et al.*, 2013).

Ion channel	Function	Drugs that modify function
Calcium	Inward channel, primary	Pregabalin
	driver for most intracellular	Gabapentin
	responses to stimulation	Ziconotide
Sodium	Inward channel; influx of	Local anesthetics
	sodium through open	Carbamazepine
	channels makes membrane	Phenytoin
	potential less negative,	
	bringing it closer to the	
	threshold potential	
	necessary to initiate an	
	action potential	
Chloride	Inward channel; influx of	Benzodiazepines
	chloride makes the	(amplify GABA type A
	membrane potential more	induced opening of
	negative (hyperpolarized)	channel)
Potassium	Outward channel; efflux of	Baclofen
	potassium makes the	Clonidine
	membrane potential more	Opioids
	negative (hyperpolarized)	•

II. <u>Dorsal root ganglion, dorsal horn, and modulation</u> <u>of secondary neurons</u>

Signals reach the dorsal root ganglion via unmyelinated and myelinated noxious fibers and synapse in the dorsal horn of the spinal cord. The stimulus is then carried by second-order spinal neurons through the neospinothalamic and paleospinothalamic tracts (*Gandhi et al.*, 2011).

When an excitatory action potential reaches the terminal end of the presynaptic afferent neuron, N-type voltage-gated calcium channels open. The influx of calcium leads to vesicle docking and exocytosis of the specific neurotransmitter contained within the vesicle. The neurotransmitter molecules diffuse across the synaptic cleft to convey the signal to the secondary neuron. The released neurotransmitter may interact with its specific receptor to evoke either excitatory or inhibitory responses (*Babos et al.*, 2013).

Glutamate is a primary excitatory neurotransmitter; it interacts with one of three receptor subtypes. Substance P is another common excitatory mediator; it interacts with the G-protein-coupled NK1 (neurokinin1) receptor to produce a slightly slower response compared to ion channel-coupled signals. Gamma-aminobutyric acid (GABA) is a common inhibitory signaling transmitter. Likewise, endorphins interact with Gi-protein-coupled mu and delta opioid receptors to reduce the activity of pain signaling pathways (*Griffin and Woolf, 2012*).