REPRODUCTIVE AND PHYSIOLOGICAL PERFORMANCE OF MALE DROMEDARY CAMELS DURING BREEDING AND NON-BREEDING SEASONS

By

MAIADA WAGDY AHMED ALLAM

B.Sc. Agric. Sc. (Animal Production), Ain Shams University, 2005

A thesis submitted in partial fulfillment

of

the requirements for the degree of

MASTER OF SCIENCE

in

Agricultural Science (Animal Physiology)

Department of Animal Production Faculty of Agriculture Ain Shams University

Approval Sheet

REPRODUCTIVE AND PHYSIOLOGICAL PERFORMANCE OF MALE DROMEDARY CAMELS DURING BREEDING AND NON-BREEDING SEASONS

By

MAIADA WAGDY AHMED ALLAM

B.Sc. Agric. Sc. (Animal Production), Ain Shams University, 2005

This thesis for M. Sc. degree ha	s been approved by:
Dr. Gamal Ashour Hassan	
Prof. of Animal Physiology, Fac	culty of Agriculture, Cairo University
Dr. Hanafy Embaby El-Sobhy	
Prof. Emeritus of Animal Phys	siology, Faculty of Agriculture, Ain Shams
University	
Dr. Essmat Bakry Abdalla	
Prof. of Animal Physiology, Fac	culty of Agriculture, Ain Shams University
Date of Examination: 4/4/20	011

REPRODUCTIVE AND PHYSIOLOGICAL PERFORMANCE OF MALE DROMEDARY CAMELS DURING BREEDING AND NON-BREEDING SEASONS

By

MAIADA WAGDY AHMED ALLAM

B.Sc. Agric. Sc. (Animal Production), Ain Shams University, 2005

Under the supervision of:

Dr. Essmat Bakry Abdalla

Prof. of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Alaa El-Sayed Bellasy Zeidan

Head of Research of Physiology of Reproduction and Artificial Insemination, Animal Production Research Institute, Agricultural Research Center

ABSTRACT

Maiada Wagdy Ahmed Allam: Reproductive and Physiological Performance of Male Dromedary Camels during Breeding and Non-breeding Seasons. Unpublished M.Sc. Thesis, Department of Animal Production, Faculty of Agriculture, Ain Shams University, 2011.

Two experiments were carried out. The first experiment aimed to investigate the effects of breeding (December till April) and non-breeding (May till November) seasons either hot-humid (May till July) or hot-dry (August till November) months of the male dromedary camels on body thermoregulation, testicular measurements, epididymal semen characteristics, blood haematology and blood serum components. The histological changes in the right and left testes were also observed. The second experiment, aimed to define the effects of breeding and non-breeding seasons on epididymal semen quality and enzymatic activities, during storage at 5 °C for up to 3 days.

The obtained results showed that, rectal temperature (RT), respiration rate (RR) and pulse rate (PR) were significantly (P<0.05) lower, while testis weight, testicular volume, scrotal circumference and testis tone firmer score of the dromedary camels were significantly (P<0.05) higher during breeding season as compared to non-breeding season either hot-dry or hot-humid months. Semen colour of the dromedary camels were creamish white, milky white and watery white during breeding season, hot-dry and hot-humid months, respectively. Semen consistency of the dromedary camels was viscous during breeding season and hot-dry months, semi-viscous during hot-humid months. The percentage of sperm motility and the sperm-cell concentration were significantly (P<0.05) higher during breeding season as compared to both hot-dry and hot-humid months.

Seminal pH was significantly (P<0.05) higher during hot-humid months as compared to breeding season and hot-dry months. The

percentages of dead spermatozoa, sperm abnormalities and acrosomal damage of spermatozoa increased significantly (P<0.05) in hot-humid months as compared to both hot-dry months and breeding season. Haemoglobin (Hb) and haematocrit (Ht) were significantly (P<0.05) higher during non-breeding season either hot-humid or hot-dry months than breeding season. Red blood cells (RBC's) count was significantly (P<0.05) higher, while white blood cells (WBC's) count was significantly (P<0.05) lower during non-breeding season at hot-humid months than hot-dry months and breeding season. Total proteins, concentrations, alkaline phosphatase (ALP), alanine-aminotrasferase (ALT) and aspartate-aminotransferase (AST) enzymes were significantly (P<0.05) higher, while albumin and globulin concentrations were insignificantly increased in the non-breeding season at hot-humid months as compared with hot-dry months and breeding season. Cholesterol, ureanitrogen, potassium, calcium, total phosphorus concentrations and testosterone hormone increased significantly (P<0.05), while creatinine concentration in blood serum decreased significantly (P<0.05) during breeding season as compared with non-breeding season in hot-dry and hot-humid months. The testes examination revealed that more active during breeding season especially in the left testes than the non-breeding season either hot-dry and hot-humid months (Experiment 1).

The percentage of sperm motility and storagability of spermatozoa were significantly (P<0.05) higher, while the percentages of dead spermatozoa, sperm abnormalities, acrosomal damage of spermatozoa and the amount of ALT and AST enzymes were significantly (P<0.05) lower during breeding season than non-breeding season either hot-dry or hot-humid months. The percentages of dead spermatozoa, sperm abnormalities and acrosomal damage of spermatozoa were significantly (P<0.05) higher during hot-humid months than hot-dry months and breeding season. The activities of ALT and AST enzymes of the dromedary camels semen were insignificantly higher during non-breeding season in hot-humid months than hot-dry season. The percentage of sperm

motility was significantly (P<0.05) higher, while the percentages of dead spermatozoa, sperm abnormalities, acrosomal damage of spermatozoa and the amount of ALT and AST enzymes were significantly (P<0.05) lower during storage at 5°C for 3 days. There was no significant difference on the percentage of acrosomal damage of spermatozoa, ALT and AST activities between hot-humid and hot-dry seasons at storage at 5°C for up to 1 day. The prolongation of storage at 5°C for up to 3 days significantly (P<0.05) decreased the percentage of sperm motility, while significantly (P<0.05) increased the percentages of dead spermatozoa, sperm abnormalities, acrosomal damage of spermatozoa and the amount of ALT and AST activities of the dromedary camels during breeding and non-breeding seasons. The penetrating ability of spermatozoa into shecamel cervical mucus was significantly (P<0.05) better during breeding season than non-breeding season in hot-humid months and insignificantly (P<0.05) better during hot-dry months. While, the penetrating score was significantly (P<0.05) decreased during breeding and non-breeding seasons either hot-humid or hot-dry months with the advancement time of incubation at 37°C for 4 hours (Experiment 2).

Key Words:

Male camel, breeding season, thermoregulation, testes, semen, blood, biochemistry, penetration, storage

ACKNOWLEDGEMENT

In actual fact the prayerful thanks are due to our **MERCIFUL ALLAH** who gave me the ability and patience to finish this work.

Special acknowledgement and sincere appreciation to **Dr. Essmat Bakry Abdalla**, Professor of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University, for his sharing in suggesting the subject of this study, close supervision, constructive criticism, valuable advices and great help in preparation of the manuscript.

Hearty thanks and gratitude are due to **Dr. Alaa El-Sayed Bellasy Zeidan,** Head of Research of Physiology of Reproduction and Artificial Insemination, Animal Production Research Institute, Agricultural Research Center, for his direct and excellent supervision, appreciable help, great interest, sharing in suggesting the problem, revision the manuscript, valuable guidance and encouragement throughout the different phases of this work and help during the writing of this manuscript.

Deep thanks and special gratitude extended to **Dr. Abd El-Salaam El-Azab**, Professor of Theriogenology, Faculty of Veterinary Medicine, Benha University and **Dr. Hossam Fouad**, Assistant Professor of Histology, Department of Animal Histology, Faculty of Veterinary Medicine, Benha University, for their kind help in histological studies in this work.

Special thanks and deep gratitude extended to **Dr. Atef Mahrous Abd El-Salaam Hassan,** Researcher of Animal Physiology, Animal Production Research Institute, Agricultural Research Center, for his kind help in the experimental work.

Special thanks and deep gratitude extended to **Dr. Assam Abdo**, Lecturer of Animal Physiology, Department of Animal Production, Faculty of Agriculture, Ain Shams University, for his kind help in blood haematology.

Special thanks and deep gratitude extended to **Dr. Ahmed Hafez**, for his kind help in biochemical analysis.

Special thanks and deep gratitude extended to **Staff Members** in the Slaughterhouse in Belbies City for their kind help in the experimental work.

Special thanks and deep gratitude extended to **Staff Members** of the Department of Animal Production, Faculty of Agriculture, Ain Shams University, for their help during this work.

Last but not least, hearty thanks and gratitude for my lovely Mother and my lovely Father, my dear Sister, and my dear Brothers, for their encouragement throughout the different periods of this work.

CONTENTS

	Page
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF PLATES	xii
ABBREVIATIONS	xiii
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	4
Experiment 1. Effects of breeding and non-breeding seasons on:	4
1. Body thermoregulation	4
1.1. Rectal temperature	4
1.2. Respiration rate	5
1.3. Pulse rate	7
2. Testicular measurements	8
2.1. Testis weight	8
2.2. Testicular volume	10
2.3. Scrotal circumference	11
2.4. Testes tone firmer	12
3. Semen characteristics of the camel	13
3.1. Semen colour	13
3.2. Semen consistency	14
3.3. Hydrogen-ion concentration	15
3.4. Percentage of sperm motility	16
3.5. Percentage of dead spermatozoa	17
3.6. Percentage of sperm abnormalities	19
3.7. Percentage of acrosomal damage	20
3.8. Sperm-cell concentration	22
4. Blood haematology	26
4.1. Haemaglobin (Hb)	26
4.2. Haematocrit (Ht)	27

4	4.4. White blood cells (WBC's).
5.]	Blood serum components
;	5.1. Total protein concentration
;	5.2. Albumin and globulin concentrations
;	5.3. Cholestrol concentration. 34
	5.4. Creatinine concentration
	5.5. Urea-N concentration 36
	5.6. Testosterone level
	5.7. Sodium concentration
	5.8. Potassium concentration. 40
	5.9. Calcium concentration
	5.10. Total phosphorus concentration
	5.11. Alkaline phosphatase enzyme activity
	5.12. Alanine-aminotransferase enzyme activity
	5.13. Aspartate-aminotransferase enzyme activity
6.]	Histological changes in the camel testes:49
Ex	periment 2. Effects of breeding and non-breeding seasons on
	nel semen quality and enzymatic activities during storage at
	C :
1.	Semen quality52
	1.1. Percentage of sperm motility (%)
	1.2. Percentage of dead spermatozoa (%)
	1.3. Percentage of sperm abnormalities (%)
	1.4. Percentage of acrosomal damage (%)
2.]	Enzymatic activities56
,	2.1. Alanine-aminotransferase (ALT)
,	2.2. Aspartate-aminotransferase (AST)
3.	Sperm penetration into cervical mucus as affected by
br	eeding and non-breeding seasons during incubation at 37°C
for	tup to 4 hours

III. MATERIALS AND METHODS	59
1. Materials	59
1.1. Experimental animals	59
1.2. Feeding and management	60
2. Methods	60
3. Procedures	61
Experiment 1	61
1. Thermoregulation parameters:	61
1.1. Rectal temperature (°C)	65
1.2. Respiration rate (breaths/min)	65
1.3. Pulse rate (pulses/min)	65
2. Testicular measurements:	65
2.1. Testes weight (gm)	65
2.2. Testicular volume (cm ³)	67
2.3. Scrotal circumference (cm)	67
2.4. Testes tone firmer (score)	67
3. Camels semen collection:	67
3.1. Transportation of the samples	68
3.2. Sperm recovery	68
3.2.1. Recovery by cuts (swimming up) method	68
4. Epididymal semen characteristics:	68
4.1. Semen colour	69
4.2. Semen consistency	69
4.3. Hydrogen-ion concentration (pH)	69
4.4. Percentage of sperm motility (%)	69
4.5. Percentage of dead spermatozoa (%)	70
4.6. Percentage of sperm abnormalities (%)	71
4.7. Percentage of acrosomal damage (%)	71
4.8. Sperm-cell concentration (×10 ⁶ /ml)	71
5. Blood sampling:	72
5.1. Haematological parameters:	72

5 1 1 II 1 1 1 (/ /II)	72
5.1.1. Haemoglobin (g/dl)	
5.1.2. Haematocrit (%)	72
5.1.3. Red blood cells (RBC's) and White blood cells	
(WBC's)	72
5.2. Blood serum components:	73
5.2.1. Total protein	73
5.2.2. Albumin and globulin	73
5.2.3. Cholesterol.	73
5.2.4. Creatinine	73
5.2.5. Urea-nitrogen	73
5.2.6. Testosterone hormone (T)	74
5.2.7. Blood serum minerals	74
5.2.7.1. Sodium concentration (Na)	74
5.2.7.2. Potassium concentration (K)	74
5.2.7.3. Calcium concentration (Ca)	74
5.2.7.4. Total phosphorus concentration (P)	74
5.2.8. Blood serum enzymes	75
5.2.8.1. Alkaline phosphatese (ALP)	75
5.2.8.2. Alanine and Aspartate-aminotransferase	
(ALT, AST)	75
6. Histological changes in the camel testes:	75
Experiment 2	76
7. Semen extension:	76
8. Chillig of semen at 5°C:	76
9. Sperm penetration (Score):	77
10. Statistical analysis:	77
IV. RESULTS AND DISCUSSION	79
Temperature–humidity index (THI):	79
Experiment 1. Effects of breeding and non-breeding seasons:	79
1. Thermoregulation parameters:	79
1.1. Rectal temperature (°C):	79

		~ ~
	1.2. Respiration rate (breaths/min):	80
	1.3. Pulse rate (pulses/min):	81
2.	Testicular measurements	84
	2.1. Testis weight (gm)	84
	2.2. Testicular volume (cm ³)	85
	2.3. Scrotal circumference (cm)	85
	2.4. Testes tone firmer (score).	86
3.	Epididymal semen characteristics:	89
	3.1. Semen colour	89
	3.2. Semen consistency	89
	3.3. Hydrogen-ion concentration (pH)	9(
	3.4. Percentage of sperm motility (%)	90
	3.5. Percentage of dead spermatozoa (%)	9
	3.6. Percentage of sperm abnormalities (%)	92
	3.7. Percentage of acrosomal damage (%)	92
	3.8. Sperm-cell concentration (×10 ⁶ /ml)	9.
4.	Blood haematology:	9
	4.1.Haemoglobin concentration (gm/dl)	9
	4.2. Haematocrit value (%)	9
	4.3. Red blood cells counts (x10 ⁶ /mm ³)	9
	4.4. White blood cells counts (x10 ³ /mm ³)	9
5.	Blood serum components:	10
	5.1. Total protein concentration (gm/dI)	10
	5. 2. Albumin concentration (gm/dI)	10
	5. 3. Globulin concentration (gm/dI)	10
	5.4. Cholesterol concentration (mg/dl)	10
	5.5. Creatinine concentration (mg/dl)	10
	5.6. Urea-N concentration (mg/dl)	10
	5.7. Testosterone concentration (ng/ml)	10
	5.8. Serum electrodes (Minerals)	11
	5.8.1. Sodium concentration (mg/dl)	11

5.8.2. Potassium concentration (mg/dl)
5.8.3. Calcium concentration (mg/dl)
5.8.4. Total phosphorus concentration (mg/dl)
5.9. Serum enzymes activities
5.9.1. Alkaline phosphatase (U/L)
5.9.2. Alanine-aminotransferase (U/L)
5.9.3. Aspartate-aminotransferase (U/L)
6. Histological changes of the testes:
Experiment 2. Epididymal semen quality and enzymatic
activities of the dromedary camels as affected by breeding and
non-breeding seasons during storage at $5^{\circ}C$ for 3
days:
1. Percentage of sperm motility (%)
2. Percentage of dead spermatozoa (%)
3. Percentage of sperm abnormalities (%)
4. Percentage of acrosomal damage (%)
5. Alanine-aminotransferase activity (U/10 ⁶ spermatozoa)
6. Aspartate-aminotransferase activity (U/10 ⁶ spermatozoa)
3. Sperm penetration into cervical mucus as affected by
breeding and non-breeding seasons during incubation at 37°C
for up to 4 hours:
V. SUMMARY
VI. CONCLUSION
VII. REFERENCES
ARABIC SUMMARY

LIST OF TABLES

Гable		ъ
No.		P
1	Experimental design and numbers and seasons of the year of the male dromedary camels (Experiment	
	1)	
2	Experimental design of the effects of different seasons of the year on the semen quality and enzymatic	
	activities for the male dromedary camels (Experiment	
	2)	
3	Mean of air temperature, relative humidity,	
	temperature-humidity (THI) index and length of day	
	light, during breeding and non-breeding (hot-humid	
	and hot-dry months) seasons according to Egyptian	
	Meterological Authority	
4	Effects of breeding and non-breeding seasons on	
	thermoregulation parameters in the male dromedary	
	camel (Means \pm SE)	
5	Effects of breeding and non-breeding seasons on	
	testicular measurements in the dromedary camels	
	$(Means \pm SE)$	
6	Effects of breeding and non-breeding seasons on the	
	epididymal semen characteristics in the dromedary	
_	camels (Means ± SE)	
7	Effects of breeding and non-breeding seasons on blood	
	hematology in the male dromedary camels (Means ±	
0	SE)	•
8	Effects of breeding and non-breeding seasons on some	
	blood serum components of the male dromedary	
	camels (Means \pm SE)	