Invasive Mechanical Ventilation Versus Non Invasive In Management of Cardiogenic and Non Cardiogenic Pulmonary Oedema Patients

Essay

Submitted in Partial Fulfillment for the Master Degree in Anaesthesiology

By Shimaa Raouf Fouad

M.B.B.Ch
Faculty of Medicine-Cairo University

Supervisors

Prof. Dr. Bassem Boulos Ghobrial

Professor of Anaesthesiology and intensive care Faculty of Medicine - Ain Shams University

Dr. Mayar Hassan Elsersi

Lecturer of Anaesthesiology and intensive care Faculty of Medicine - Ain Shams University

Dr. Mohamed Sayed Shorbagy

Lecturer of Anaesthesiology and intensive care Faculty of Medicine - Ain Shams University

Faculty of Medicine
Ain Shams University
2014

سورة البقرة الآية: ٣٢

Before all thanks to ALLAH

I would like to express my deepest gratitude and to **Prof.Dr Bassem Bolus Gabriel**, Professor of anaesthesia and intensive care, Faculty of medicine, Ain shams University for his great support, extreme patience and valuable suggestions and comments through out the whole work his supervision was very helpful during the performance of this essay. It was agret honor to work under his guidance and supervision.

I would like to express my deepest appreciation to **Dr. Mayar Hassan Elsersi** Lecturer of Anaesthesiology and Intensive Care, Faculty of Medicine, Ain Shams University for her kindness and constant guidance to complete this work in the best way.

I am greatly indebted to **Dr. Mohamed Sayed Shorbagy**, Lecturer of Anaesthesiology and intensive care, Faculty of Medicine, Ain Shams University for his sincere aid and fruitful advice. He gave me much of his precious time and constructivere remarks.

Shimaa Raouf Fouad

A special thanks and appreciation to my lovely parents and my husband for their support, advice, help, encouragement, standing beside me and love which gave me the power to complete this work.

List of Contents

List of FiguresI
List of TablesII
List of AbbreviationsIII
Introduction1
Aim of the Work5
Review of Literature
Chapter (1): Respiratory physiology of pulmonary
oedema6
Chapter (2): Patho Physiology of pulmonary
oedema11
Chapter (3): Mechanical ventilation27
 Modes of mechanical ventilation27
• Modes of weaning 39
• Ventilators 48
☼ Chapter (4): Indications and contraindications of
mechanical ventilation66
○ Chapter (5): Complications84
Summary95
References98
Arabic summary

List of Figures

No	Content	Page
1	Frank Starling law	10
2	Volume control and pressure control are modes	28
	of continuous mandatory ventilation	
3	Airway pressure-release ventilation and	35
	biphasic positive airway pressure are forms of	
	pressure-controlled intermittent mandatory	
	ventilation in which spontaneous breaths can	
	occur at any point without altering the	
	ventilator-delivered breaths	
4	Adaptive Support Ventilation adjusts both the	46
	inspiratory pressure of mandatory and/or	
	spontaneous breaths and the mandatory breath	
	rate to maintain the desired breathing pattern	
5	Intellivent mode combines Adaptive Support	47
	Ventilation (ASV) with closed loop control of	
	PEEP and FIO2	
6	Negative pressure machines	49
7	Neonatal mechanical ventilator	51
8	Noninvasive ventilator	53
9	SMART BAG MO Bag-Valve-Mask Resuscitator	56
10	Respiratory mechanics monitor	60
11	A:Nasal bridge ulcer caused by a mask	85
	B:Enlargement of the bridge of the nose	

List of Tables

No	Content	Page
1	Special forms of non-cardiogenic pulmonary	22
	edema	
2	Terminology related to ventilator settings	65
3	Indicators for Mechanical Ventilation	77
4	Clinical Presentation and Radiographic Result	93
	of Ventilator Associated Pneumonia (VAP)	

List of Abbreviations

Abb.	Meaning
ABG	Arterial blood gas
AC	Assist control
AECOPD	Acute exacerbation of chronic obstructive
	pulmonary disease
AMI	Acute myocardial infarction
APRV	Airway pressure release ventilation
ARDS	Acute respiratory distress syndrome
ARF	Acute respiratory failure
ASV	Adaptive support ventilation
ATC	Automatic tube compansation
BiPAP	Bilevel positive airway pressure
BNP	B-type natriuretic peptide
BPAP	Bilevel positive airway pressure
CDC	Centers for disease control
CHF	Congestive heart failure
CMV	Continuous mandatory ventilation
CMV	Continuous mandatory ventilation
COPD	Chronic obstructive pulmonary disease
CPAP	Continuous positive airway pressure
СРЕ	Cardiogenic pulmonary edema
CPIS	Clinical pulmonary infection score
ED	Emergency department
EPAP	Expiratory positive airway pressure

List of Abbreviations

Abb.	Meaning
ET	Endotracheal
F	Frequency
HFJV	High frequency jet ventilation
HFOV	High frequency oscillatory ventilation
HFV	High frequency ventilation
HFV-A	High frequency ventilation active
HFV-P	High frequency ventilation passive
ННМЕ	Hygroscopic heat moisture exchanger
ICU	Intensive care unit
IMV	Intermittent mandatory ventilation
IMV	Invasive mechanical ventilation
IPAP	Inspiratory positive airway pressure
LMA	Laryngeal mask airway
LV	Left ventricle
LV	Liquid ventilation
MI	Myocardial infarction
MMV	Mandatory minute ventilation
NAVA	Neurally adjusted ventilatory assist
NCPE	Non cardiogenic pulmonary edema
NIMV	Non invasive mechanical ventilation
NIV	Non invasive ventilation
NNIS	National nosocomial infection surveillance
NNT	Numbers needed to treat
NPPV	Noninvasive positive pressure ventilation

List of Abbreviations

Abb.	Meaning
P _{ALV}	Pressure in alveoli
P _{AO}	Pressure at airway opening
Pao2	Pressure of oxygen in arterial blood
PAV	Proportional assist ventilation
PC	Pressure control
PEEP	Positive end expiratory pressure
PLV	Partial liquid ventilation
PRVC	Pressure regulated volume control
PSB	Protected specimen brush
PSV	Pressure support ventilation
PTA	Transairway pressure
SBTs	Spontaneous breathing trials
SIMV	Synchronized i intermittent mandatory ventilation
SIRS	Systemic inflammatory response symdrome
Tlow	Exhalation time
TLV	Total liquid ventilation
TV	Tidal volume
V/Q	Ventilation perfusion ratio
VAP	Ventilator associated pneumonia
VC	Volume control
VE	Minute ventilation
VSV	Volume support ventilation
WBCs	White blood cells

Introduction

Pulmonary edema is differentiated into two categories cardiogenic and noncardiogenic. Both result from acute fluid accumulation in the alveoli, with resultant varying degrees of oxygen desaturation and respiratory distress. Cardiogenic shock primarily results from increased pulmonary hydrostatic pressure, which causes plasma ultrafiltrate to cross the pulmonary capillary membrane into the interstitium (**Abraham et al., 2000**).

In contrast, noncardiogenic pulmonary edema most often results from permeability changes in the pulmonary capillary membrane itself. Understanding the differences between cardiogenic and noncardiogenic pulmonary edema is essential for effective therapeutic intervention to occur (**Bernard et al.**, 1994).

Cardiogenic pulmonary edema (CPE) is a common and potentially deadly condition frequently encountered in emergency medicine (**Fromm et al., 1995**). Many conditions exist that directly or indirectly lead to the development of pulmonary edema. Regardless of the underlying cause of CPE, all patients who develop CPE must be diagnosed and managed expeditiously (**Mattu et al., 2002**).

Patients who have developed CPE can quickly develop respiratory failure if delays occur in recognition or management of the condition. Patients who develop CPE, in fact, have an inhospital mortality of 15% to 20%, and mortality may be even higher when the condition is associated with acute myocardial infarction (AMI) or acute valvular dysfunction. Acute care providers should maintain a high level of vigilance for this condition and initiate management strategies promptly (Mattu et al., 2002).

The chance of COPD patient with acute respiratory failure having a second episode of acute respiratory failure after an initial (first 48 hours) successful response to NIMV is about 20%. This event is more likely to occur in patients with more severe functional and clinical disease who have more complications at the time of admission to the ICU. These patients have a very poor in hospital prognosis, especially if NIMV is continued rather than prompt initiation of Invasive ventilation (Ambrosino et al., 1995).

The severity of the episode of acute respiratory failure as assessed by clinical and functional compromise, and the level of acidosis and hypercapnia during an initial trial of non-invasive mechanical ventilation, have an influence on the likelihood for success with non-invasive mechanical ventilation

and may prove to be useful in deciding whether to continue with this treatment (Colice et al., 1993).

In recent years non-invasive mechanical ventilation (NIMV), delivered through a facial or nose mask, has been successfully used in selected populations as an effective treatment for acute respiratory failure and as technique for weaning intubated patients (Celikel et al., 1998).

Despite NIMV having also been used in patients affected by "pure" hypoxic respiratory failure, most studies have concentrated on patients with chronic obstructive pulmonary disease (COPD). The rate of failure of NIMV in these patients ranges from 5% to 40% (Nava et al., 1998).

Recognition of this subset of patients is very important both from a clinical and ethical point of view since prolonged application of NIMV may unduly delay the time of intubation. Failure of NIMV has usually been defined as: (a) need for intubation because of lack of improvement in arterial blood gas tensions and clinical parameters after a few hours of ventilation (usually 1–3 hours); (b) clinical deterioration and subsequent intubation during hospital stay, and (c) death (**Briasoulis and Pavlides, 2001**).

Studies specifically designed to assess the best predictors of NIMV outcomes agree that changes in PH in the first hour of

ventilation and the clinical condition of the patients before ventilation are the most powerful factors linked to success or failure. It has also been shown that, despite an initial improvement in blood gas tensions and clinical condition, a subset of patients go on to die or need to be intubated days after the successful application of NIMV (Lam et al., 2011).

NIMV resulted in an immediate and sustained improvement in blood gas tensions in pulmonary oedema patients enrolled after an episode of acute respiratory failure, requiring more than one day of ventilation. The arterial blood gases continued to improve in most of the responders so that weaning and discharge from the hospital became possible (Cohen et al., 2006).

Aim of the Work

The following essay compare the use of non invasive and invasive ventilation as a mechanical ventilation in pulmonary oedema patients with respect to its indications, limitations, related ventilators and ventilator- patient interfaces. Also, complications of NIV and IV were discussed in details.