A Study of the Role of Pentacam in Identifying Ectasia Risks Among Keratorefractive Candidates

Thesis
Submitted for Partial Fulfillment of
M.Sc. Degree of Ophthalmology

by
Khaldoon Omer Ali Al-Nosairy
M.B.B.S, Sana'a University

Under Supervision of:

Prof. Dr. Ismail Ibrahim Nour El Din Hamza

Professor of ophthalmology Ain Shams University

Dr. Mouamen Mohamed Mostafa

Lecturer of Ophthalmology Ain Shams University

Ain Shams University Faculty of Medicine 2015

Acknowledgment

First and foremost, I feel always deeply indebted to "ALLAH", the Most Gracious and the Most Merciful.

I want to dedicate this work to the **memory of my father and** grandfather who implanted the seeds of success and encouraged me throughout my life.

I deeply express my sincere thanks and gratitude for my mother and wife for their prayers and patience during my study and preparation for this thesis. I also thank my brothers for their support and help throughout my life.

I would like to express my deepest gratitude and cardinal appreciation to **Prof. Dr. Ismail Hamza**, Professor of Ophthalmology, Faculty of medicine, Ain Shams University, who kindly supervised and motivated the performance of this work, for his kind guidance and constant encouragement throughout this work. I would like to thank you very much for your support, understanding and guidance.

I am greatly honored to express my sincere appreciation to **Dr. Mouamen Mostafa**, lecturer of Ophthalmology, Ain Shams University for devoting part of his precious time to help me in the preparation of this work and his assistance and dedicated involvement in very step throughout the process of thesis preparation.

Table of Contents

Acknowled	lgment	i
Table of Co	ontents	ii
LIST of Abl	previations	v
LIST OF FIG	GURES	viii
LIST OF TA	BLES	xi
INTRODUC	TION	1
Aim of the	work	3
1. Kerato	orefractive Surgery	4
1.1. Co	ornea and Optics	5
1.2. Ti	ne excimer laser	9
1.2.1.	PRK and LASIK	11
1.3 Ti	ne femtosecond laser	12
2. Ectati	c Corneal Disorders	14
2.1. Ko	eratoconus	14
2.1.1.	Epidemiology	15
2.1.2.	Aetiology and Clinical picture	16
2.1.3.	Forme Fruste Keratoconus/ Keratoconus Suspect	19
2.1.4.	Atypical Forms of Keratoconus	24
2.1.5.	Pseudokeratoconus: Artifacts in the Characterization of Corneal	24
2.2. Po	ellucid Marginal Degeneration	26
2.3. K	eratoglobus	27
3. Ectasi	a after Keratorefractive Surgery (Keratectasia)	28

3.1.	Epidemiology of Keratectasia	28
3.2.	Biomechanics of Keratectasia	30
3.3.	Histopathology of Keratectasia	31
3.4.	Diagnosis of Keratectasia	32
3.5.	Risk Factors for Keratectasia	33
3.5.1	Abnormal Preoperative Topography	34
3.5.2	Residual Stromal Bed Thickness (RSB)	36
3.5.3	S. Corneal Thickness (CT)	37
3.5.4	Degree of Myopia	38
3.5.5	s. Age	39
3.6.	Ectasia Risk Scoring Systems	40
4. Cor	neal Imaging for Keratorefractive Candidates	44
4.1.	Corneal Topography	46
4.1.1	Keratometry	46
4.1.2	. Keratoscopy	47
4.1.3	Computerized Videokeratoscopy: Modern Corneal Topography	47
4.1.4	. Topographic-Based Indices for Detecting Ectasia	51
4.1.5	Limitation of Corneal Topography	54
4.2.	Corneal Biomechanics	56
4.3.	Elevation Based Topography (Tomography)	58
5. Pen	tacam as A Screening Tool for Ectasia Risks	59
5.1.	Scheimpflug's Principle	61
5.2.	Pentacam Maps and Screening Guidelines	63
5.2.1	Curvature Maps	64
5.2.2	Corneal Asphericity	65
5 2 3	Flevation Mans	66

	5.2.4.	Posterior Corneal Surface	70
	5.2.5.	Corneal Pachymetry	72
	5.2.6.	Topometric indices	77
	5.2.7.	The Belin–Ambrosio Enhance Ectasia Display III(BAD III)	78
II.	Mater	ials and Methods	80
III.	RES	ULTS	87
Dis	cussion		102
Cor	nclusion		115
Red	commen	dations	117
Sur	nmary_		118
Ref	erences		120

LIST of Abbreviations

AA	Analyze Area
AB/IS	Asymmetrical Bowtie/ Inferior
	Steepening
AB/SKRAX	Asymmetrical Bowtie/Skewed Radial
	Axis
AC	Anterior Chamber
AFE	Apex Front Elevation
AK	Arcuate Keratotomy
ALK	Automated Lamellar Keratectomy
APE	Apex posterior elevation
APP	Apex point pachymetry
ART	Ambrosio Relational Thickness
ASCRS	American Society of Cataract and
	Refractive Surgery
BAD III	Belin/Ambrosio Enhanced Ectasia
	Display III
BSCVA	Best Spectacle Corrected Visual
	Acuity
BFTE	Best-fit toric ellipsoid
BSF	Best Fit Sphere
ССТ	Central Corneal Thickness
СН	Corneal Hysteresis
CLEK	Collaborative Longitudinal Evaluation
	of Keratoconus
CLMI	Cone Location and Magnitude Index
CRF	Corneal Resistance Factor
CSI	Center/Surround Index
СТ	Corneal Thickness
CTSP	Corneal Thickness Spatial Profile
D	Diopter
Da	Deviation of ambrosio relational
	thickness from normality
Df	Deviation of front surface elevations
	from normality
Db	Deviation of back elevations from
	normality
DP	Deviation of Pachymetric distribution
	from normality
DSI	Differential Sector Index

Dt	Deviation of thinnest point
	pachymetry and displacement from
	normality
EHBFS	Enhanced Best fit sphere
Epi-LASIK	Epipolis Laser in Situ Keratomileusis
ERSS	Ectasia Risk Scoring System
FDA	US food and Drug Administration
FEB	Front elevation point of Belin
Femto-LASIK or FS-LASIK	Femtosecond Laser in Situ
	Keratomileusis
FFKC	Forme Fruste Keratoconus
Flex	Femtosecond Lenticule Extraction
Hex K	Hexagonal Keratotomy
IHD	Index of Height Decentration
Inf.	Inferior
IOL	Intera-ocular Lens
IOP	Intera-ocular Pressure
I-S	Inferior- Superior
ISRS/AAO	International Society of Refractive
	Surgery of the American Academy of
	Ophthalmology
ISV	Index of Surface Variance
IVA	Index of Vertical asymmetry
К	Keratometry
K ₁	Flat meridian keratometry
K ₂	Steepest meridian keratometry
KC or KCN	Keratoconus
KCS	Keratoconus Suspect
KI	Keratoconus Index
KISA	K- value, I-S value, AST and SRAX
K _m	Mean Keratometry
K _{max}	Maximal Keratometry
KPI	Keratoconus Prediction Index
LASEK	Laser Assisted Subepithelial
	Keratomileusis
LASIK	Laser Assisted in Situ Keratomileusis
LRI	Limbal Relaxing Incision
Max.	Maximum
Max. AE	Maximal Anterior Elevation point
Max. PE	Maximal posterior elevation point
Min.	Minimum
	<u> </u>

MRSE	Manifest Refraction Spherical
NOT	Equivalent
NCT	Non-contact Tonometry
ORA	Ocular Response Analyzer
OSI	Opposite Sector Index
PEB	Posterior Elevation point of Belin
PI. Avg.	Pachymetric progression index average
PI. Min	Pachymetric Progression index minimum
PI. Max	Pachymetric progression index
	maximum
PIT	Percentage Increase in Thickness
PLK	Pellucid-like Keratoconus
PMD	Pellucid Marginal Degeneration
PRK	Photorefractive Keratectomy
PPI	Pachymetric Progression Index
r	Radius
RelEx	Refractive Lenticule Extraction
RK	Radial keratotomy
Rmin.	Radii minimum
ROC	Receiver Operating Curve.
RP	Refractive Power
RSB	Residual Stromal Bed
SAI	Surface Asymmetry Index
SD	Standard Deviation
SIM K	Corneal Power Simulation
	Measurements
SMILE	Small Incision Lenticule Extraction
SRAX or SRA	Skewed Radial Axis
TFE	Thinnest front elevation point.
TKI	Topographic Keratoconus
	Classification Index
TPE	Thinnest posterior Elevation Point
TP	Thinnest Point
TPP	Thinnest point pachymetry
μ	Micron
VA	Visual Acuity
Yrs	Years

LIST OF FIGURES

Figure 1-1Topographic zones of the cornea	6
Figure 1-2 Corneal vertex and apex.	7
Figure 2-1 A. Keratoconic Eye B. Munson Sign C. Rizzuti Sign	19
Figure 2-2 Schematic representation of the distribution of quantitative variable	es in the
normal (N), forme fruste keratoconus (forme fruste), keratoconus suspects (susp	ects) and
keratoconus (K) eyes.	21
Figure 2-3 The hallmark of PMD on the corneal thickness map: the bell sign.	27
Figure 3-1 Representative light photomicrographs of human post-LASIK cornec	l buttons
with ectasia. A case shows epithelial hypoplasia (black arrowhead) over an ecta	tic region
and peripheral epithelial hyperplasia (grey arrowheads). In addition to epithelial l	nypoplasi,
ectatic regions commonly displayed Bowman's layer breaks (black asterisk) and la	rger than
normal artifacteous interlamellar clefts (white arrowhead), particularly in the	posterior-
most region of the RSB.	32
Figure 3-2 Subtle topographic changes in early post-LASIK ectasia. Notice th	e inferior
steepening on the sagittal front map and the corresponding abnormal elevation	s on both
anterior and posterior surfaces.	33
Figure 3-3 Comparison of flap in LASIK and Femto-LASIK.	37
Figure 4-1 Videokeratoscopic mires are closer together in the axis of steep	curvature
(arrow), and farther apart in the flat axis (arrowhead).	48
Figure 4-2 Schematic representation of the difference between axial distar	ice (axial
curvature) and radius of curvature for 2 points on a curved surface. Points C1	& C2 are
centers of curvatures of the surface points. Points A1& A2 are endpoints of axial	distances
for the given axis Local, and steeper areas of curvature are underestimated, where	as flatter
areas are overestimated.	49
Figure 4-3 Top A, round; B, oval; C, superior steepening; D, inferior steepening; E,	irregular;
F, symmetric bow tie; G, symmetric bow tie with skewed radial axes; H, asymmetr	ic bow tie
with inferior steepening (AB/IS); I, asymmetric bow tie with superior steep	ening; J,
asymmetric bow tie with skewed radial axes (AB/SRAX) (i.e. Skewing of more the	nan 30° is
described as significantly abnormal).	50

Figure 4-4 Topography of a patient with keratoconus. The top image shows axial curvature, the bottom, tangential curvature. Note that the steeper curve on the bottom is more closely aligned to the cone.

50

Figure 4-5 Rabinowitz calculation of SRAX for the topography map in figure below. The steepest radius above the horizontal meridian is at 30 degrees. The steepest radius below the horizontal is at 273 degrees. The SRAX is 180 minus the smaller of the 2 angles between these 2 radii.

Figure 4-6 Preoperative topographies of a case showing a vertical D pattern in both eyes. 53

Figure 4-7 Figure 4 5 A schematic depiction of CLMI. C1, 2-mm-diameter circle encompassing the steepest region on the map; P1, center of circle C1; r, radial distance of P1 from the center of the map; p2, point 180 degrees from P1; C2, 2-mm-diameter circle center at p2.

Figure 4-8 Placido imagery for calculating the corneal curvature. The assumption that the perpendicular

55

Figure 4-9 Representation of corneal axial curvature analysis. A change in the reference axis can create different axial curvature maps from the same shape. The map on the left appears as a "normal" symmetric astigmatism in which the line of sight and corneal apex the same. The map on the right appears "abnormal" with a highly asymmetric bowtie pattern. Both images, however, were generated from the same astigmatic test object in which the line of sight and cornea apex are different. Red line (steep axis; blue one (flat axis)

Figure 4-10 Signal diagram obtained with the ORA in a normal eye. The red line represents the applanation signal and the green line the pressure changes. As shown, the device delivers an air pulse to the eye, which causes the cornea to move inward achieving a specific applanation state or flattening (Pressure 1). Milliseconds after the first applanation, the pressure decreases and the cornea passes through a second applanated state (Pressure 2) while returning from concavity to the normal convex curvature.

Figure 5-1: A. normal camera has a limited depth of focus compared with a Scheimpflug camera B. Three planes must intersect to produce a sharp picture (Scheimpflug Camera). 62
Figure 5-2 The Pentacam images the anterior segment of the eye by a rotating Scheimpflug camera performing a series of slit photographs. This rotating process generates pictures in

three dimensions. Because of the rotational imaging, even the center of the cornea car	1 be
precisely measured.	63
Figure 5-3 Axial curvature map of a keratoconic cornea obtained by a rotating Scheimp	flug
camera device.	65
Figure 5-4 Raw elevation data from the PAR CTS(PAR Technology). The raw elevation of	lata
displays the elevation values without comparing them to a reference surface.	67
Figure 5-5 Schematic drawing showing how exclusion of the cone from the refere	nce?
surface calculation will influence the best-fit sphere and highlight the corneal abnorma	ılity.
Because the normal cornea is only minimally prolate (does not have a conical region)	the
resultant "Enhanced" BFS in normal eyes is only minimally different and there is almost	t no
difference in the elevation maps using the standard vs the "Enhanced" BFS.	69
Figure 5-6 Belin Enhanced elevation Maps	70
Figure 5-7 Pachymetric map of a keratoconic eye obtained by means of the Scheimp	flug
photography-based system.	74
Figure 5-8 Module of pachymetric analysis from the Pentacam system. Pachymetry r	тар
with 22 concentric circles drawn centered on the thinnest point of the cornea.	74
Figure 5-9 Belin/Ambrosio enhanced ectasia display.	79
Figure III-1 Classification of patients asking for keratorefractive surgery.	87
Figure III-2 Categories of keratorefractive patients.	88
Figure III-3 Categories of patients asking for keratorefractive surgery.	88
Figure III-4 Gender distribution among groups of Patients (P value 0.065).	89
Figure III-5 Frequency of abnormalities among excluded patients detected by Pentag	cam
(BADIII= Deviation of final D value of Belin and Ambrosio Display from normality).	89
Figure III-6 Distribution of topographic patterns among normal patients. (inf. Or Su	up.=
Inferior or superior steepening).	93
Figure III-7 Distribution of topographic patterns among excluded candidates (IS= Infe	rior
steepening; SS= Superior Steepening; SKRAX= Skewed Radial Axis).	93
${\it Figure~III-8~Rate~of~abnormality~of~topography~among~normal~and~excluded~candidates.}$	94
Figure III-9 Topographic keratoconus classification among normal and excluded candida	ates
(TKI= Topographic keratoconus index classification incorporated in Pentacam software).	95

LIST OF TABLES

Table 1-1 Overview of keratorefractive surgical procedures.	4
Table 1-2 Patient selection criteria for LASIK and PRK	14
Table 2-1 Amsler-Krumeich Classification of Keratoconus by Stage	18
Table 2-2 Summary of keratoconus defnintions	21
Table 2-3 Abnormal parameters distribution among KC definitions.	23
Table 2-4 Comparison between Pellucid-like keratoconus (PLK) and Pellucid mar	ginal
degeneration (PMD).	27
Table 3-1 Reported incidence of post-LASIK ectasia	29
Table 3-2 Ectasia risk score system for identifying eyes at high risk for developing ec	tasia
after LASIK	41
Table 3-3 Ectasia Risk Factor Score Categories	41
Table 3-4 Preoperative Grading System for the Detection of Patients Who Are at Ris	sk of
Corneal Ectasia after LASIK in the Correction of Myopia (Spherical Equivalent, -4.00 to	-8.00
D)	42
Table 4-1Commonly used topographic indices.	54
Table 5-1 Comparative table about Scheimpflug imaging systems.	60
Table 5-2 Values of asphericity for the conic surfaces.	66
Table 5-3 Abnormality ranges for the topographic parameters provided by the Pento	ıcam
system.	77
Table II-1 Criteria for patients inclusion in the study.	80
Table II-2 Definitions of patients' groups.	81
Table II-3 cut-off values of elevation points.	84
Table II-4 BAD III parameters.	85
Table II-5 cut-off values for BADIII enhanced best sphere elevation points.	86
Table II-6 BAD III values and color coding.	86
Table III-1 Age distribution among groups of patients with relation to gender.	87
Table III-2 Correlation between abnormality of keratometry and exclusion of patients.	90

Table III-3 Correlation between abnormality of corneal thickness and exclusion of patie	ents.
	90
Table III-4 Correlation between abnormality of topometry and exclusion of patients.	90
Table III-5 Correlation between abnormality of posterior elevation points and exclusion	on of
patients.	91
Table III-6 Correlation between abnormality of final BAD III D value and exclusio	n of
patients.	91
Table III-7 Severity classification of keratoconic eyes.	91
Table III-8 Comparison of thinnest point pachymetry and apex point pachymetry w	ithin
groups.	92
Table III-9 The correlation between staging of topographic keratoconus classification	and
exclusion of patients.	94
Table III-10 Comparison of Pentacam parameters between patients having normal	and
topogrpahy.	96
Table III-11 Interocular differences among normal patients.	97
Table III-12 Interocular asymmetry among keratoconic patients.	98
Table III-13 Comparison of age and keratometric Indices between normal, suspicious	and
keratoconic groups.	100

INTRODUCTION

Since approval of the use of the excimer laser by the US Food and Drug Administration (FDA) in 1995 to reshape the cornea, significant developments in the correction of refractive errors such as myopia, hyperopia, and astigmatism have been achieved. Photorefractive keratectomy (PRK) as well as laser in situ keratomileusis are both documented to be safe and effective. Despite these advances, certain limitations and complications exist.¹

Post-operative ectasia emerged as one of the most important complications of keratorefractive surgery (PRK and LASIK) since the first reports of such cases by Theo Seiler MD, PhD, in 1996.² The incidence of which is estimated to range from 0.041% to 0.6%.³ Therefore, refractive surgeons face routinely the challenge of identifying cases at a higher risk for progressive keratectasia, a rare but severe complication of keratorefractive surgery.⁴

There's an indisputable recognition for the need to improve both sensitivity and specificity of the diagnostic tools for screening ectasia risks. As a result, corneal characterization should go beyond front surface curvature and single point central thickness. Consequently, a tomographic approach is essential.⁵

Regarding the role of corneal tomography for screening refractive surgery candidates, it is critical to understand that susceptibility to ectasia usually occurs in eyes with relatively normal front-surface topography. In these cases, an abnormal back elevation and pachymetric distribution provide evidence that the tomographic characterization enhances the sensitivity of this approach for detecting a predisposition to ectasia.⁶

The only commercially available purely elevation based system is the Oculus Pentacam which enables front and back elevation and pachymetric reconstruction from limbus to limbus. This gives the clinician a global view of the structure of the cornea and allows the physician to effectively screen patients for ectatic diseases. Rotating Scheimpflug cross-sectional analysis meets the criterion for a successful screening tool in that it not only provides the necessary data, but does so in a manner that does not interrupt patient flow.

Screening for the risk of ectasia is a critical issue for contemporary ophthalmology practice. The main goal of the screening for ectasia risk among refractive candidates should be the identification of very mild abnormalities that would likely be present in the preoperative states of cases with unexplained ectasia after keratorefractive surgery.⁸