

شبكة المعلومات الجامعية

بسم الله الرحمل الرحم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توتيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ١٥-١٠ منوية ورطوبة نسبية من ٢٠-٤٠ المنافلات الم

بالرسالة صفحات لم ترد بالاصل

بعض الوثائق الاصلية تالفة Cairo University
Institute of Statistical Studies and Research
Department of Operations Research

A Comparative Study for Approximation Techniques to Nonlinear Optimization Problems

By

Gamal El-Dean Abdel Hakim Mohamed El-Emam

A Thesis Submitted to the Institute of Statistical Studies & Research

Cairo University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

In

Operations Research

Under the Supervision of

Prof. Mohamed Hassan Gadallah

Professor & Head
Department of Operations Research, Institute of Statistical Studies & Research,
Cairo University, Egypt

Dr. Ramadan Zein el Dean

Associate Professor

Department of Operations Research, Institute of Statistical Studies & Research,

Cairo University, Egypt

Y31 Y 9

Cairo University Institute of Statistical Studies and Research, Egypt

Approval Sheet

A Comparative Study for Approximation Techniques to Nonlinear Optimization Problems

By

Gamal El-Dean Abdel Hakim Mohamed El-Emam

A Thesis Submitted to the Department of Operations Research In Partial Fulfillment of the Requirements for the Degree of

MASTER of SCIENCE

In

Operations Research

TABLE OF CONTENTS

			page #
TA	BLE	OF CONTENTS	ii
LIST OF TABLES			iv
		FFIGURES	V
LI	ST O	F APPENDICES	vii
A	CKNO	WLEDGEMENTS	viii
Al	BSTR	ACT	ix
1	Intr	oduction	1
	1.1	Classification of Approximation	3
		1.1.1 Response Surface Approximation	3
		1.1.2 Kriging Approximation	5
		1.1.3 Surrogate Approximation	6
		1.1.4 Taylor Series Expansion	7
		1.1.5 Non-Uniform Rational B-Spline (NURBS)	7
	1.2	Summary of thesis	8
2	Literature Review		9
	2.1	History of Literature	9
	2.2	Conclusion	18
3	Res	ponse Surface Methodology (RSM)	19
	3.1	Introduction	19
	3.2	Response Surface Methodology	22
		and Robust Design	
	3.3	The Sequential Nature of the Response	23
		Surface Methodology	
	3.4	Model Adequacy Checking	23
		3.4.1 Properties of the Least Squares Estimators	24
		3.4.2 Residual Analysis	25
	3.5	Advantages & Disadvantages of RSM	26
	3.6	Limitations and Future Extensions	27

				page#
4	Krig	ging Me	ethodology	28
	4.1	Introd	luction	28
	4.2	Basics	s of Kriging	29
	4.3	Gener	al Kriging Approach	29
	4.4	Deriva	ation of the Prediction Formula	32
	4.5	Param	neter Estimation	36
	4.6	Advar	ntages & Disadvantages of Kriging	39
	4.7	Closu	re	39
5	Modeling Using RSM and Kriging Methods		40	
	5.1	Introd	luction	40
	5.2	Soluti	ons Strategy	42
	5.3	Classi	fication of problems	46
		5.3.1	RSM and Kriging agree in solutions	46
		5.3.2	RSM solutions different	47
			from the original solutions	
		5.3.3	Kriging solutions different	49
			from the original solutions	
	5.4	Exam	•	49
			Modeling using Splitting Approach	52
		5.4.2		64
			using the Splitting Approach	
	5.5		ng Approximation using	73
		-	litting Approach	
			Analysis of Problem #23	73
	5.6	Concl	usion	80
6	Con	clusion	s and Future Research	81
	6.1	Introd	luction	81
	6.2	Appro	oximation using RSM	81
	6.3		oximations using Kriging	82
	6.4	Future	e Research	83
Ap	pend	ices		84
Re	feren	ces		110
Ar	ahic !	Summa	ırv	115

LIST OF TABLES

		Page #
Table 5.1	Summary of problems tested	41
Table 5.2	Summary of test problems using RSM, Kriging	44-45
Table 5.3	RSM and Kriging Approximations	47
Table 5.4	RSM solutions different from	48
	the original solutions	
Table 5.5	Kriging solutions different from	49
	the original solutions	
Table 5.6	Discrete domain, Fitted model, Original and Fitted model optima	54
Table 5.7	Discrete domain, Kriging, and Original model optima	74
Table A1.1	Summary of Problems description	91
Table A5.1	Discrete domain, Fitted model, Original and Fitted Model Optima.	98

LIST OF FIGURES

		Page #
Figure 4.1	Illustration that errors in regression function	30
Figure 4.2	Illustration of the impact of the global trend	38
Figure 5.1	Flowchart of the solution by RSM & Kriging	43
Figure 5.2	Progress of solution using RSM & Kriging versus	50
_	Original solution (problem #6)	
Figure 5.3	Progress of solution using RSM, Kriging versus	51
	Original solution (problem #22)	
Figure 5.4	3-Dimensional plot of Problem #27	53
Figure 5.5a	Nonlinear Function, Problem #27	56
	Plotted in domain [0, 1]	
Figure 5.5b	Nonlinear Function, Problem #27	57
	Plotted in domain [1, 2]	
Figure 5.5c	Nonlinear Function, Problem #27	58
	Plotted in domain [2, 3]	
Figure 5.5d	Nonlinear Function, Problem #27	59
	Plotted in domain [3, 4]	
Figure 5.5e	Nonlinear Function, Problem #27	60
	Plotted in domain [4, 5]	
Figure 5.6	Nonlinear Function, Problem #27 plotted in	61-63
	the RSM for five domains: (a) $x \in [0, 1]$,	
	(b) $x \in [1, 2], (c) x \in [2, 3], (d) x \in [3, 4], (e) x \in [4, 5]$	
Figure 5.7	One Dimensional Nonlinear Function	64
	(Hongjie Wang, 1998)	
Figure 5.8a	1st, 2nd, 4th, 5th, 6th order RSM model versus	67
	original function model for $x \in [3.1, 5.2]$	
Figure 5.8b	1st, 2nd, 4th, 5th, 6th order RSM model versus	68
	original function model for $x \in [5.2, 8.4]$	
Figure 5.8c	1st, 2nd, 4th, 5th, 6th order RSM model versus	69
	original function model for $x \in [8.4, 10.5]$	
Figure 5.8d	1st, 2nd, 4th, 5th, 6th order RSM model versus	70
	original function model for $x \in [10.5, 13.2]$	
Figure 5.8e	1st, 2nd, 4th, 5th, 6th order RSM model versus	71
	original function model for $x \in [13.2, 17.2]$	
Figure 5.8f	1st, 2nd, 4th, 5th, 6th order RSM model versus	72
	original function model for $x \in [17.2, 20.4]$	

		Page #
Figure 5.9	3-Dimensional Nonlinear function (Problem #23)	73
Figure 5.10a	Nonlinear Function problem#23 plotted in domain $x_1 \in [1, 3], x_2 \in [1, 6]$	75
Figure 5.10b	Nonlinear Function problem#23 plotted in domain $x_1 \in [3, 6], x_2 \in [3, 6].$	76
Figure 5.10c	Nonlinear Function problem#23 plotted in domain $x_1 \in [6, 10], x_2 \in [6, 10]$	77
Figure 5.11a	Kriging of Problem #23 plotted in domain $x_1 \in [1, 3], x_2 \in [1, 6]$	78
Figure 5.11b	Kriging of Problem #23 plotted in domain $x_1 \in [3, 6], x_2 \in [3, 6]$	79
Figure 5.11c	Kriging of Problem #23 plotted in domain $x_1 \in [6, 10], x_2 \in [6, 10]$	80
Figure A5.1	3-Dimensional Nonlinear Problem #19 (Sasena-2002)	97
Figure A5.2a	Nonlinear Function, problem #19 plotted in domain [0, 1]	100
Figure A5.2b	Nonlinear Function, problem #19 plotted in domain [1, 2]	101
Figure A5.2c	Nonlinear Function, problem #19 plotted in domain [2, 3]	102
Figure A5.2d	Nonlinear Function, problem #19 plotted in domain [3, 4]	103
Figure A5.2e	Nonlinear Function, problem #19 plotted in domain [4, 5]	104
Figure A5.3a	RSM in problem #19 plotted in domain [0, 1]	105
Figure A5.3b	RSM in problem #19 plotted in domain [1, 2]	. 106
Figure A5.3c	RSM in problem #19 plotted in domain [2, 3]	107
Figure A5.3d	RSM in problem #19 plotted in domain [3, 4]	108
Figure A5.2e	RSM in problem #19 plotted in domain [4, 5]	109

LIST OF APPENDICES

		Page #
Appendix I	List of Test Pad Problems	84
Appendix II	Program Listing	93
Appendix III	Program Listing	94
Appendix IV	Program Listing	96
Appendix V	Analysis of Problems #19	97

Acknowledgements

I would like to thank my great supervisor Professor Mohamed Hassan Gadallah, Professor & Department Head of Operations Research, Institute of Statistical Studies & Research, Cairo University, for his expert advice and excellent guidance. I would also like to thank Dr. Ramadan A. Zein El-Dean Associate Professor, Department of Operations Research, Institute of Statistical Studies & Research, Cairo University, for his support along the past few years.

ABSTRACT

Constrained nonlinear programming problems often arise in many engineering applications and much of today's engineering analysis consists of running complex computer codes. Despite a steady increase in computing power, the complexity of engineering analyses seems to advance at the same rate. The use of statistical techniques to build approximations of expensive computer analysis codes pervades much of today's engineering design. These statistical approximations, or meta-models, are used to replace the actual expensive computer analyses, facilitating multidisciplinary and concept exploration. In this thesis, we review some of these techniques, especially Response Surface Methodology (RSM) and Kriging. Both methods are applied to thirty widely used classes' of single objective optimization problems. We compare the results of both Response Surface Methodology and Kriging model with the Generally solutions of the original nonlinear optimization solutions. speaking, Kriging method is able to return almost the same solution as the original model optimum for the majority of problems. Response Surface Methodology comes next to Kriging is finding the optimum to the original As a remedy, a new approach is proposed to split the model into model. several smaller sub-models. The problem is transformed into a number of sub-problems with an impact on increased model CPU processing time. A set of test bed problems is verified using both approximation methods. When Splitting is employed prior to approximation, both techniques are able to capture system optima consistently. Monotonicity and continuity are still important and valid concerns in any approximation.