

Radioactive, Radionuclide and Gamma Dose Studies of Kaolin and Bauxitic Rock Materials, Sinai, Egypt.

A Dissertation Submitted for the Degree of Doctor of Philosophy in Nuclear Physics

BY

Howaida Mansour Ahmed Mansour

Assistant lecturer at Department of Physics Bachelor of Science in Physics (2000) Master Degree in Nuclear Physics (2005)

Supervised by

Prof. Dr. Hosnia M. Abu-Zeid

Prof. of Nuclear Physics Physics Department Faculty of Women for Art, Science and Education, Ain Shams University

Prof. Dr. Ibraheem El-Katany El-Aassy

Prof. of Nuclear Ores
Nuclear Materials Authority, Egypt

Dr. Thanaa M. Abd El-Maksoud

Ass. Prof. of Nuclear Physics Physics Department Faculty of Women for Art, Science and Education, Ain Shams University

Prof. Dr. Fadia Yossef Mohammed Ahmed

Prof. of Ores processing Nuclear Materials Authority, Egypt

Dr. Afaf Abd El-Lateef Nada

Ass. Prof. of Nuclear Physics
Physics Department
Faculty of Women for Art,
Science and Education,
Ain Shams University

To
Physics Department
2010

Radioactive, Radionuclide and Gamma Dose Studies of Kaolin and Bauxitic Rock Materials, Sinai, Egypt.

A Dissertation Submitted for the Degree of Doctor of Philosophy in Nuclear Physics

BY

Howaida Mansour Ahmed Mansour

Assistant lecturer at Department of Physics

Supervisors

Prof. Dr. Hosnia M. Abu-Zeid

Prof. Dr. Ibraheem El-Katany El-Aassy

Prof. Dr. Fadia Yossef MohammedAhmed

Dr. Thanaa M. Abd El-Maksoud

Dr. Afaf Abd El-Lateef Nada

Approval Stamp

/ /2010

Date of Approval

/ /2010

Approval of Faculty Council

/ /2010

Approval of University Council

/ /2010

Ain Shams University
Faculty of Women for Arts
Science and Education
physics Department

First, great thankfulness to almighty God who's Beneficent, Merciful for my success in completing this work.

I wish to express my sincere gratitude and deepest appreciation to my supervisions that supported me throughout my doctoral studies:

. .

Prof. Dr. Hosnia Mohamed Abu-zied, Professor of nuclear physics Women's College for Arts, Science and Education, Ain Shams University, for her supervision, honest guidance, continuous encouragement and trustful help in all steps needed to complete this work

Prof. Ibraheem Katany El-Assy Professor of Applied Geology at Nuclear Material Authority, Egypt, for his supervision, continuous support, kindly guidance throughout the present work and trustful help through the experimentation and writing the manuscript.

Prof. Dr. Fadia Yossef Ahmed, Professor of Ores processing At Nuclear Materials Authority, Egypt, for his supervision, continuous support, kindly guidance throughout the present work and trustful help through the experimentation

Dr. Thannaa M.Abd-EL-Maksoud, Assistant Professor of nuclear physics Women's College for Arts, Science and Education, Ain Shams University, for her supervision, advises helpful discussions, trustful help in practical applications and kind encouragement throughout this work.

Dr. Afaf A. Nada, Assistant Professor of nuclear physics women's college for Arts, Science and Education, Ain Shams University, for her supervision, advises helpful discussions, trustful help in practical applications, valuable revision and kind encouragement throughout this work

My great thanks to the head master of Physics Department, *prof. Dr.*Amera EL dakrory and staff members, Women's college for Arts,

Science and Education, Ain Shams University, for valuable assistance during the progress of this work.

Finally I am very thankful for *my family* for their encouragement, trust, and faithfully advise that assured me all times of handling my doctorate.

My husband Mr. Rabea for his patience, encouragement and understanding of my dedication to completing my doctorate, and thanks for my children Alaa and Mahmoud.

CONTENTS

Summary	Page
·- ·· J	i
Contents	iii
List of figures	vi
List of tables	ix
CHAPTER I Introduction	
Contents	Page
I-1 General	_
I-1-1 Chemical Composition of Bauxitic and Kaolin	2
I-1-2 Kaolin and bauxite industries	3
I-2 Environmental Radioactivity	6
I-2-1 Naturally Occurring Radioactive Substances	6
I-3 Geological Setting of The Studied Localities	13
I-3-1 Localities of Kaolin	13
I-3-2 Localities of Bauxitic Sediments	14
I-4 Pervious Work	17
1-5 Objectives	25
CHAPTER II The constinuted Appendix and Appendix and Tachwin	
Theoretical Aspects and Analytical Techniq	ues
II-1 Gamma Ray Interactions with Matter	26
-	

Contents	Page
II-1-2 Compton Scatter	27
II-1-3 Pair Production	29
II-2 Equilibria In Radioactive Decay	31
II-3 Evolution of Radiation Dose Standards	32
II- 4 Limits for Occupational exposure	32
II-5 Identification by Physical Technique	36
II-5-1 Semiconductor Detectors	37
II-5-2 High-purity Germanium (HPGe) Detector	39
II-5-3 The Components of a gamma-ray spectroscopy	
system:	43
- Marinelli Beaker	43
- Shielding Consideration	43
- High Voltage Power Supply	47
- Pre-Amplifier	47
- Linear Amplifier	48
- Oscilloscope	49
- Pulse-Height Multichannal Analyzer	49
- The analogue-to- Digital Convertor	50
II-6 Analytical Techniques	50
II-6-1 X-ray Diffraction	50
II-6-2 UV-visible Spectrophotometer	51
II-6-3 Atomic Absorption (AA)	53

CHAPTER III Experimental Techniques

Contents	Page
III-1 Measurements by Physical Technique:	56
III-1-1 Sample Preparation	56
III-1-2 Description of The System	58
III-1-3 Methods of Analysis	60
III-1-4 Calibration of The System	61
a- Energy Calibration	61
b- Peak Shape Calibration (Energy Resolution)	62
c- Efficiency Calibration	65
III-1-5 Definitions	69
a- Activity Concentration	69
b- Annual Effective Dose Rate in Air	70
c- Radium Equivalent	70
d- Internal and External Hazard (H_{in} , H_{ex})	71
e- Level Index " I_{γ} "	72
f- Absorbed Dose	73
III-2 Measurements by Analytical Techniques	73
III-2-1 Sample Preparation for Chemical Analyses	73
III-2-2 Description of Instruments	74
a- UV-visible Spectrophotometer	74
b- Atomic Absorption (AA)	74
c- XRD	75

CHAPTER IV Results and Discussions

Contents	Page
IV-1 Radiometric Features	77
IV-1-1 Kaolin samples	77
IV-1-2 Gibbsite samples	93
IV-2 Mineralogical and Chemical Features	112
IV-2-1 Mineralogical Studies of Kaolin Samples	112
IV-2-2 Chemical studies of kaolin samples	114
IV-2-2-1 Correlation between uranium and iron	116
IV-2-2-2 Correlation between uranium and aluminum	116
IV-2-2-3 Correlation between uranium chemically and	
radiometry	117
IV-2-3 Mineralogical Studies of Gibbsite samples	118
IV-2-4 Chemical studies of gibbsite samples	119
IV-2-4-1 Correlation between uranium and iron	121
IV-2-4-2 Correlation between uranium and aluminum	122
IV-2-4-3 Correlation between uranium chemically and	
radiometry	123
Conclusions	124
References	127
Arabic Summary	138

LIST OF FIGURES

<i>Figure. No.</i> (1-1): Simplified diagram for the natural decay series	Pag
(1-2): Geological and Location map of the studied areas (After EL Shahat and Kora, 1986) with modifications (II-1): The individual mass attenuation processes for gamma rays	16 26
(II-2): Photoelectric effect	30
(II-3): Compton Scattering	30
(II-4): Pair production process	30
(II-5): An illustration of the relative activities of a parent nuclei	32
(II-6): Band structure for electron energies in insulators and semiconductors	38
(II-7): Vertically and co-axial hyperpure germanium detector and liquid nitrogen dewar	41
(II-8) Schematic diagram of pulse height analyzer component "ORTEC- model 659"	45
(II-9): Schematic of a filled marinelli beaker in position on a Ge detector	45
(II-10): Event in the vicinity of a typical source, detectors, and shield configuration	46
(II-11): Low-background shield configuration for a detector	46
(II-12): Block diagram of the spectrophotometer	53
(II-13): Atomic absorption spectrometer block diagram	55

Figure. No.	Page
(III-1): Example of ambient natural background spectrum inside the housing enclosure of HPGe detector compartment	56
(III-2): Gamma-ray spectroscopy system for HPGe detector	59
(III-3): Energy scale channel linearity relation	62
(III-4): Definition of detector resolution	64
(III-5): Examples of response functions for detectors with relatively good resolution and relatively poor resolution	64
(III-6): The absolute efficiency curves for some used configurations: (a) for 100 ml and (b) for 250 ml.	69
(III-7): (a) X-ray Diffraction (XRD) identify the unknown minerals in the samples and (b) UV-visible Spectrophotometer	76
(III-8): Atomic Absorption instrument (AA) estimate several major elements in their solutions	76
(IV-1): The spectrum for the highest kaolin sample (T-3-2) taken by HPGe detector and compared with background	79
(IV-2): Activity concentrations (Bq/kg) of ²³⁸ U, ²³² Th and ⁴⁰ K for Kaolin samples	83
(IV-3): The activity concentrations in (Bq/kg) between a-(⁴⁰ K& ²³² Th), b-(²³⁸ U& ²³² Th), c-(²³⁸ U& ⁴⁰ K), and d-(²³⁸ U& ²²⁶ Ra) in samples	86
(IV-4): The relation between the activity concentrations in (Bq/kg) between (²³⁸ U & ²³⁵ U)	87

Figure. No.	Page
(IV-5): Contribution of the different radionuclides in the absorbed dose rate in all kaolin localities	91
(IV-6): Frequency distribution of activity concentrations (Bq/kg) for ²³⁸ U, ²³² Th, ⁴⁰ K and absorbed dose rate (nGy/h) for all the measured samples	92
(IV-7): The spectrum for the highest kaolin sample (H-2) taken by HPGe detector and compared with background	95
(IV-8): Activity concentrations (Bq/kg) of ²³⁸ U, ²³² Th and ⁴⁰ K for gibbsite samples	98
(IV-9): The relation between the activity concentrations in (Bq/kg) between a-(\(^{40}\text{K} & \text{Z}^{232}\text{Th}\), b-(\(^{238}\text{U}\&^{232}\text{Th}\), c-(\(^{238}\text{U} & \text{A}^{40}\text{K}\),and d-(\(^{238}\text{U}\&^{226}\text{Ra}\) in samples	100
(IV-10): The relation between the activity concentrations in (Bq/kg) between e-(238 U& 235 U)	101
(IV-11): Contribution of the different radionuclides in the absorbed dose rate in localities of gibbsite	108
(IV-12): Frequency distribution of ²³⁸ U, ²³² Th, ⁴⁰ K activity concentrations (Bq/kg) and absorbed dose rate (nGy/h) for all the measured gibbsite samples	109
(IV-13): X-ray diffraction pattern of bulk kaolin samples from EL Tih I as example of kaolin K= Kaolinite, Q = quartz, G = goethite and H = hematite	112
(IV-14): SEM analysis with back scatters image and EDX showing non clay minerals epidote (A) and hematite (B) of bulk kaolin samples from EL Esila	
location	113

Figure. No.	Page
(IV-15): SEM analysis with back scatters image and EDX showing non clay minerals rutile (A) and	
amphibole (B) of bulk kaolin samples from EL Shalal location	113
(IV-16): Correlation between chemically uranium (ppm) with iron for selected samples of kaolin	116
(IV-17):Correlation between chemically uranium (ppm) with aluminum for selected samples of kaolin	116
(IV-18):Correlation for selected samples of kaolin between (a) radiometric uranium (ppm) with	
chemically uranium (ppm) after neglected two samples and (b) before neglecting samples	117
(IV-19): X-ray diffraction pattern for gibbsite sample	118
(IV-20): Correlation between chemically uranium (ppm) with iron for (a) low and moderate type and (b) high grade for gibbsite samples	121
(IV-20): Correlation between chemically uranium (ppm) with Aluminum for (a) low and moderate type and (b) high grade for gibbsite samples	122
(IV-21): Correlation of gibbsite samples between radiometric uranium (ppm) with chemically uranium (ppm) for (a) Talet Seleim and (b) West Abu Thor	123
1104 11101	

LIST OF TABLES

Table No.	Page
(1-1a): Radionuclides induced in the earth's atmosphere by cosmic rays	8
(1-1b): Nonseries primordial radionuclides	8
(1-2): Average Uranium concentration in various rocks.	12
(1-3): Ranges and Average of the concentration of ⁴⁰ K, ²³² Th and ²³⁸ U typical rocks and soils	12
(1-4): Average Radium, Uranium and Potassium contents in various Rocks	13
(1-5): Natural radioactivity in bauxite and solid residues from Alumina production in Western Australia	21
(I1-1): Radiation Weighting Factors for Common Radiations	35
(II-2): Tissue weighting factors w_T	36
(II-3): Recommended Dose Limits	36
(III-1): The Minimum Detectable Activity of HPGe Detector System	57
(III-2): The Standard Radioactive Sources Used for Calibrated Energy of EU-152	62
(III-3): Definitions of Full-Energy Photopeak, Intrinsic, and Total Efficiency.	68
(IV-1): The activity concentrations in Bq/Kg for the measured radionuclides for ²³⁸ U series and ²³² Th series in kaolin samples	78

Table No.	Page
(IV-2): Average activity concentrations in (Bq/kg) of 235 U, 238 U, 232 Th and 40 K in kaolin samples	81
(IV-3): Concentrations for ²³⁵ U, ²²⁶ Ra, ²³⁸ U, ²³² Th, ⁴⁰ K (ppm), ⁴⁰ K%, Th/U and U/Ra ratios in kaolin samples	85
(IV-4): Hazard parameters for kaolin samples	89
(IV-5): The activity concentrations in Bq/Kg for the measured radionuclides for ²³⁸ U series and ²³² Th series in gibbsite samples	94
(IV-6): Average activity concentrations in (Bq/kg) of 235 U, 238 U, 232 Th and 40 K of gibbsite samples	97
(IV-7): Concentrations for ²³⁵ U, ²²⁶ Ra, ²³⁸ U, ²³² Th, ⁴⁰ K (ppm), ⁴⁰ K%, Th/U and U/Ra ratios for gibbsite samples	102
(IV-8): Hazard parameters for gibbsite samples	105
(IV-9): Ranges and Average of hazard parameters for each location of kaolin samples	106
(IV-10): Ranges and Average of hazard parameters for each location of gibbsite samples	106
(IV-11): Comparison of the activity concentration for kaolin samples	110
(IV-12): Comparison of the activity concentration for gibbsite samples	111
(IV-13): Concentrations (ppm) of chemically (U), radiometry (eU) measurements, U/eU ratios, $Fe_2O_3\%$ and $AL_2O_3\%$ for kaolin samples	115
(IV-14): Concentrations (ppm) of chemically (U), radiometry (eU) measurements, U/eU ratios, $Fe_2O_3\%$ and $AL_2O_3\%$ concentrations for gibbsite samples	120

Content of chapter I Introduction

I-1 General	1
I-1-1 Chemical composition of Bauxite and Kaolin.	2
I-1-2 Kaolin and bauxite in industries.	3
I-2 Environmental Radioactivity.	6
I-2-1 Naturally Occurring Radioactive Substances.	6
I-3 Geological setting of the studied Localities.	13
I-3-1 Localities of kaolin.	13
I-3-2 Localities of Bauxitic Sediments.	15
I-4 Pervious Work.	17
1-5 Objectives.	27