A COMPARATIVE STUDY BETWEEN CONFORMAL AND INTENSITY MODULATED RADIATION THERAPY IN THE TREATMENT OF PRIMARY NASOPHARYNGEAL CARCINOMAS

THESIS

Submitted for the partial fulfillment of the M.D degree in Clinical Oncology

Presented by

Karim Nabil Mashhour

M.B.B.Ch., Msc. Clinical Oncology

Under the supervision of

Prof. Dr. Ehsan Gamal El-Din El-Ghoneimy

Professor of Clinical Oncology

Faculty of medicine - Cairo University

Prof. Dr. Mohamed Abdullah Hassan

Professor of Clinical Oncology

Faculty of medicine - Cairo University

Prof. Dr. Mahmoud Fawzy El-Bestar

Professor of ENT

Faculty of medicine - Cairo University

Prof. Dr. Omar Moawia Othman

A. Professor of Radiology

Faculty of medicine - Cairo University

Contents

Acknowledgments	3
List of Figures & Tables	4
List of Abbreviations	8
Abstract and Keywords	11
I Introduction:	
Chapter 1: Introduction	12
Introduction	12
Aim of Work	15
II Review of Literature:	
Chapter 2: Nasopharyngeal Carcinoma	16
Chapter 3: Conformal 3D Radiation Therapy	47
Chapter 4: Intensity Modulated Radiation Therapy	72
Chapter 5: The effect of radiation on normal tissues of the head and neck	95
III Methodology:	
Chapter 6: Patients and Methods	120
Chapter 7: Results	133
IV Discussion:	
Chapter 8: Discussion	169
V Summary:	
Chapter 9: Summary & Conclusion	183
English Summary	183
Conclusion	185
Arabic Summary	186
VI References:	
References:	187

Acknowledgements

First and foremost, my deepest praises are due to Almighty "ALLAH" who enabled me to finish this piece of work appropriately.

I would like to express my deep thanks and gratitude to **Prof. Dr. Ehsan Gamal El-Din EL-Ghoneimy** for her continuous meticulous supervision apart from her spiritual support that paved the way to the achievement of this work and remarkable advices removing any obstacle.

I feel deeply indebted to **Prof. Dr. Mohamed Abdalla Hassan** for his precious valuable advices, close supervision. I shall always be proud to have worked under his guidance.

My sincere appreciation to **Prof. Dr. Mahmoud Fawzy El-Bestar** for his ultimate scientific help and continuous encouragement throughout my work. Really had the pleasure to work with him.

Also I would like to express my deep thanks to **Prof. Dr. Omar Moawia Othman** for his continuous unlimited support and help.

I would like to express my deep thanks to the physics team (NEMROCK) for their unlimited help.

Finally, I would like to express my infinite gratitude and my deepest appreciation to my family, all staff members and to my colleagues, at Clinical Oncology Department, for their support.

Karim Mashhour

List of Figures & Tables

Number	Title	Page
Fig 2.a	Mid-sagittal section of the head showing the nasopharynx and related structures	19
Table 2.a	Foramina of the base of the skull and associated anatomic structures	20
Fig 2.b	Midsagittal magnetic resonance image (MRI) of the head, showing the nasopharynx and related structures	21
Fig 2.c	Basal view of skull illustrating the foramina of the base of the skull and the occupying structures.	22
Table 2.b	Robbin's classification on the lymph node region.	23
Fig 2.d	Schematic representation of the various neck node groups	24
Table 2.c	Anatomical structures defining the boundaries of the neck levels and sub-levels	24
Fig 2.e	Axial T2-weighted MRI through the midnasopharynx showing the presence of a metastatic right lateral retropharyngeal lymph node (N).	31
Fig 2.f	MRI scans of a patient with early stage carcinoma of the nasopharynx	35
Fig 2.g	Endoscopic view of a T1 tumor in the nasopharynx	36
Fig 2.h	Positron emission tomography coupled with computed tomography (PET-CT) for a patient with nasopharyngeal carcinoma.	36
Fig 2.i	Photomicrographs of nasopharyngeal carcinoma	38
Table 2.d	The american joint committee on cancer and international union against cancer staging system(7 th edition 2010)	39
Table 2.e	Guidelines of follow-up management of nasopharyngeal cancer after definitive treatment	45
Fig 3.a	Example of immobilization repositioning system used for patients undergoing radiation therapy for head and neck cancer.	50
Fig 3.b	Deformable image registration to generate contours from an early treatment-planning computed tomography (CT) to the middle-course treatment planning CT for a patient with nasopharyngeal cancer.	53
Fig 3.c	Cumulative DVH	54
Table 3.a	Differences of delineation of CTV between the "reduced-volume" technique and the RTOG protocols	57

Table 3.b	A proposed lymph node coverage scheme according to the nodal status in the treatment of NPC	59
Table 3.c	Consensus guidelines for the radiological boundaries of the neck node levels.	60
Fig 3.d	Clinical target volume (CTV) of neck nodes of various levels delineated on the image of a laryngeal cancer patient with T1N0M0 disease	61
Fig 3.e	Axial CT images of a patient with N0 neck with retropharyngeal and retrostyloid space delineated. The delineated areas correspond to the CTV, thus no margins for set-up error was included.	62
Fig 3.f	Axial CT images of a patient with N0 neck with supraclavicular fossa delineated	63
Fig 3.g	The position of lateral facio cervical portal in Ho's phase I treatment	67
Fig 4.a	A typical multileaf collimator used for delivery of intensity-modulated radiation therapy looking toward the radiation source.	80
Fig 4.b	Target volumes and radiation dose distribution of a patient with T2N2M0 NPC. GTV, CTV, and PTC delineated according to the RTOG 0615 protocol	84
Fig 4.c	Dose-volume histogram on target volumes and OARs of the same patient with T2N2M0 NPC	85
Table 4.a	Dose constraints to the OARs (organs at risk) and planning organ at risk volumes (PRVs) in IMRT NPC	88
Fig 4.d	The intensity-modulated radiation therapy technique used at Pamela Youde Nethersole Eastern Hospital	90
Fig 4.e	Isodose curves of an inverse IMRT plan delivered using multivane dynamic multi-leaf collimator	92
Fig 4.f	Isodose curves of an inverse IMRT plan using nine coplanar gantry angles delivered with conventional MLC for a patient with T3N0 carcinoma of the nasopharynx	93
Fig 4.g	Example of digitally reconstructed radiograph (<i>left</i>) and electronic portal image (<i>right</i>) of a patient treated for nasopharynx cancer. Portal image was acquired on an amorphous silicon flat-panel image detector; green contour indicates irradiated area of an intensity-modulated treatment field delivered with a multileaf collimator.	94
Fig 5.a	Radiation induced Mucositis.	99
Table 5.a	RTOG scoring for acute radiation-induced salivary gland morbidity.	101
Table 5.b	CTCAE v3.0 scoring criteria for xerostomia	102
Fig 5.b	Radiation-induced xerostomia.	102
Table 5.c	Dental caries secondary to radiation therapy RTOG-EORTC scoring criteria	109
Fig 5.c	Dental caries secondary to radiation therapy.	110

Fig 6.a	Thermoplastic mask system extending from vertex of scalp to shoulder for immobilization of the	125
g v····	patient in the treatment of nasopharyngeal carcinoma	
Fig 6.b	A seven fields IMRT plan done after target volume delineation.	126
Table 6.a	Acute Radiation Morbidity Scoring Criteria	131
Table 6.b	RTOG/EORTC Late Radiation Morbidity Scoring Schema	132
Table 6.c	National Cancer Institute common toxicity criteria	133
Table 7.a	Patient characteristics among 20 patients with nasopharygeal carcinoma treated by 3D conformal radiation therapy (Group A) and another 20 patients treated by IMRT (Group B).	136
Fig 7.a	Sex distribution among the 40 patients treated by 3D conformal (Group A) and IMRT (Group B) techniques.	137
Fig 7.b	Age distribution among the 40 patients treated by 3D conformal (Group A) and IMRT (Group B) techniques.	137
Table 7.b	RTOG/EORTC Acute maximum toxicity during RT among the 40 patients treated by 3D conformal (Group A) and IMRT (Group B) techniques.	138
Table 7.c	NCI common toxicity criteria recorded during chemotherapy intake among the 40 patients treated by 3D conformal (Group A) and IMRT (Group B) techniques.	140
Table 7.d	RTOG/EORTC late maximum toxicity during RT among the 40 patients treated by 3D conformal (Group A) and IMRT (Group B) techniques	141
Fig 7.c	Salivary gland scintigraphy comparison between the 2 arms.	146
Table 7.e	Response to treatment at a follow up of 20 months among the 40 patients.	147
Fig 7.d	Local tumor control for groups A and B treated by 3D conformal RT and IMRT respectively	148
Fig 7.e	DVH for a nasopharyngeal patient treated by IMRT(upper figure) and by 3D-CRT (lower figure)	149
Fig 7.f	A 3D-CRT and IMRT plans showing dose wash at a level of a gross lymph node for a patient with nasopharyngeal carcinoma.	150
Fig 7.g	The CT scan for a patient with T2b nasopharyngeal cancer with parapharyngeal space extension tha may be underdosed during electron treatment.	151
Fig 7.h	Quality assurance for an IMRT case.	152
Fig 7.i	Electronic Portal Image Device (EPID).	153
Table 7.f	Dose-Volume statistics for target volume.	154
Fig 7.j	A comparative DVH for both techniques regarding PTV70 coverage.	155
Fig 7.k	Better dose conformality for coverage of the nodal regions using an IMRT plan than a 3D-CRT plan	156
Fig 7.l	Highly conformal dose distributions achieved with IMRT, particularly with respect to parotid sparin	157
Fig 7.m	A comparative DVH for both techniques regarding dose received by parotid glands.	158

Fig 7.n	A comparative DVH for both techniques regarding dose received by Cochleae.	159
Fig 7.o	A comparative DVH for both techniques regarding dose received by brainstem (A) and spinal cord (B).	160
Table 7.g	Dose-Volume statistics derived from DVH for normal tissue.	161
Fig 7.p	MRI nasopharynx showing a mass in the lateral pharyngeal wall with encroachment on the posterior pharyngeal wall.	163
Fig 7.q	Follow up MRI (2 months post-treatment) showing CR of the mass; however the fossa of Rosenmuller's was obliterated by a soft tissue residual.	163
Fig 7.r	PET/CT scan showing a negative study with no FDG avid uptake (confirming CR).	164
Fig 7.s	MRI nasopharynx revealed the mass in the posterior wall, without any lymph node involvement.	165
Fig 7.t	A dose-wash for her treatment plan.	165
Fig 7.u	Follow up MRI (2 months post-treatment) showing complete resolution of the mass.	166
Fig 7.v	MRI before and after treatment showing complete resolution of the nasopharyngeal mass but with a residual neck lymph node about 3x2 cm.	167
Fig 7.w	A dose-wash for his treatment plan.	167
Fig 7.x	Right selective neck dissection.	168
Fig 7.y	MRI before and after treatment showing marked regression of the nasopharyngeal mass with a minimal residual versus radiotherapy changes.	169
Fig 7.z	PET/CT scan showing a negative study with no FDG avid uptake (confirming CR).	170

List of Abbreviations

3D: Three dimensional

AJCC: American Joint Committee on Cancer

BEV: Beam eye view

CI: Conformity Index

CN: Cranial nerves

CT: Computed Tomography

CRT: Conformal radiation therapy

CTV: Clinical Target Volume

DFFR: Distant failure free rate

DRR: Digitally reconstructed radiograph

DVH: Dose Volume Histogram

EBV: Epstein Barr virus

EGFR: Epithelial growth factor receptor

EORTC: European organization for research and treatment of cancer

EPID: Electronic portal image device

FDG: Fluorodeoxyglucose

FP: Forward planning

FOM: Floor of mouth

GTV: Gross Target Volume

Gy: Gray

HBO: Hyperbaric oxygen

HNSCC: Head and Neck Squamous cell carcinoma

ICRP: International Commission on Radiological Protection

ICRU: International Commission on Radiation Units and Measurements

IGRT: Image guided radiation therapy

IMRT: Intensity modulated radiation therapy

ITV: Internal target volume

LAHNC: Locally advanced Head and Neck Cancer

LC: Local control

LFFR: Local failure free rate

MLC: Multi-leaf collimator

MRI: Magnetic Resonance Imaging

MU: Monitor units

MVCT: Megavoltage computed tomography

NCI: National cancer institute

NPC: Nasopharyngeal carcinoma

OAR: Organ at risk

OME: Otitis media with effusion

PET: Positron Emission Tomography

PRV: Planning at risk volume

PTV: Planning Target Volume

QA: Quality assurance

RECIST: Response evaluation criteria in solid tumours

REV: Room eye view

RLN: Retropharyngral lymph node

RTOG: Radiation therapy oncology group

SCC: Squamous cell carcinoma

SIB: Simultaneous integrated boost

SNHL: sensori-neural hearing loss

TPS: Treatment planning system

TMJ: Tempero-mandibular joint

VEGF: Vascular endothelial growth factor

Abstract

<u>Objectives:</u> The study is a comparative randomized study between two groups of patients, the aim of which is to compare 3D conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) as newer modalities in treating nasopharyngeal carcinomas; evaluating and comparing both techniques as regard their efficacy on tumor response, local control and treatment related toxicity as well as a dosimetric comparison between both techniques.

<u>Patients and Methods:</u> Between February 2010 and December 2011, 20 patients with nasopharyngeal carcinoma were treated by 3D CRT technique (Group A) and compared to another 20 patients treated by IMRT (Group B). Both groups were treated at Kasr El-Ainy Center of Clinical Oncology and Nuclear Medicine (NEMROCK). The two groups were treated concurrently with platinol based chemotherapy as a weekly sensitizer and post-radiotherapy with cisplatin and 5-FU for 3 cycles. Patients were assessed for treatment related toxicity using the European Organization for research and treatment of cancer, the Radiation Oncology Group (EORTC/RTOG) and the National cancer institute common toxicity (NCI).

Results: Group A showed a higher incidence of treatment related toxicity than in group B particularly xerostomia. IMRT was clearly able to preserve the parotid gland function. Between February 2010 and December 2011 with a median follow up 20 months for both groups, all patients entered in complete remission after treatment except one in group A. Local control rates were 95% and 100% for groups A and B respectively. Results of the dosimetric comparison between both techniques showed that IMRT had a better tumor coverage and conformity index. As for the dose homogeneity it was also better in the IMRT plans and the reason for this was attributed to the dose inhomogeneity at the photon/electron junction in the 3D-CRT plans. Also, doses received by the risk structures, particularly parotids, was significantly less in the IMRT plans than those of 3D-CRT. A statistically significant difference was also observed in the V30 to the parotid gland, which was 95.8% and 39.3% with CRT and IMRT, respectively (p < 0.001). IMRT reduced mean doses to the cochleae from 53.3 Gy to 46.8 Gy (right side) and 49.16 Gy to 42.72 Gy (left side) with a p-value of 0.008 and 0.013, respectively. Maximum doses to the spinal cord, brainstem, chiasma and temporal lobe were greater for patients treated by CRT compared with IMRT (p < 0.05, for all).

<u>Conclusion:</u> IMRT technique was clearly able to increase the dose delivery to the target volume, improve conformity and homogeneity index and spare the parotid glands and reduce dose to the risk organs in comparison to 3D-CRT.

Key words: Nasopharynx cancer, 3D-conformal, IMRT, xerostomia.

Introduction

Nasopharyngeal carcinoma (NPC) is a malignant tumor of nasopharyngeal epithelium. The median number of nasopharyngeal carcinoma patients in NEMROCK during the period of 2004- 2009 was 15 cases per year; Comprising 10 % of head and neck cancer patients and 0.5 % of all cancer patients (NEMROCK registration database).

Because the nasopharynx is immediately adjacent to the base of skull, surgical resection with an acceptable margin is often not achievable. Nasopharyngeal carcinoma (NPC) is highly sensitive to ionizing radiation, and radiation therapy is the mainstay treatment modality for nonmetastatic disease. Conformal therapy describes radiotherapy treatment that creates a high dose volume that is shaped to closely conform to the desired target volumes while minimizing (as much as possible) the dose to critical normal tissues (Gunderson et al 2012).

Chemo-radiotherapy became the standard of care for non-metastatic nasopharyngeal carcinomas followed by 3 cycles of adjuvant chemotherapy (Al-Sarraf et al 2001 and Adelstein et al 2003).

Intensity- modulated radiation therapy (IMRT) represents one of the major technical advancement in modern radiation therapy. IMRT is an advanced three-dimensional (3D) conformal treatment that uses non-uniform beam intensity patterns with computer aided optimization to achieve superior dose distribution with much higher conformality than those achievable with conventional 3D conformal radiation therapy (3DCRT). Because of this new capability in manipulating the intensities of individual rays within each beam, IMRT allows greater control of dose distributions that, when combined with various image-guided techniques to precisely delineate target volumes and deliver the planned treatments, may improve tumor control and reduce normal tissue toxicity(Hunt et al 2001).

Several institutions have shown a potential dosimetric improvement for IMRT over conventional and 3D conformal techniques in the setting of nasopharyngeal cancer. Cheng et al showed that target coverage of the tumor was maintained and nodal coverage was improved in 17 nasopharyngeal carcinoma patients, as compared with conventional beam arrangements. Also the ability of IMRT to spare parotid gland was exciting (Cheng et al 2001).

In 2002, Lee et al. reported the USCF experience of treating 67 NPC patients using IMRT. Approximately, 70% of all patients had stages III and IV diseases. The prescribed dose was 65–70 Gy (2.12–2.25 Gy/fraction/day) to the gross target volume (GTV) and positive neck nodes, 60 Gy (1.8–2.0 Gy/fraction/day) to the clinical target volume (CTV), 50–60 Gy to the clinically negative neck. Fifty patients received concomitant cisplatin and adjuvant cisplatin and 5-fluorouracil chemotherapy according to Intergroup 0099 trial. With a median follow-up of 31months, the 4-year estimates of local progression-free, local-regional progression-free and distant metastases free rates were 97%, 98%, and 66%, respectively. The 4-year estimate of overall survival was 88%. This was one of the first studies that demonstrated an improved tumor control by improved tumor target coverage using IMRT (Lee et al. 2002).

In a randomized trial from Hong Kong, Kwong et al. (2008) compared the disease control and salivary gland dysfunction in stage II NPC patients treated with IMRT vs. three-dimensional radiotherapy (3D-CRT). The 4-year local control was 90.5% with IMRT vs. 71.7% with 3DRT (p = 0.019). Neck control, distant metastasis, failure-free, and disease-specific survival were not significantly different between the two arms. Because of the improved treatment outcome and toxicity profile (less than 8% of patients treated with IMRT experienced grade II xerostomia, and no patient had grade III or IV parotid dysfunction), IMRT is recommended for definitive treatment for all patients with nasopharyngeal cancer. (**Kwong et al. 2008**)

One of the major complaints from patients treated with conventional external beam radiation therapy to the nasopharynx is xerostomia because of a high dose irradiation to parotid glands bilaterally. As mentioned above, the probability and severity of xerostomia

is largely dependent on the radiation dose and the volume of the parotid gland. IMRT is capable of reducing the dose to the parotid glands while simultaneously delivering high doses to the tumor targets. Reported studies of IMRT for NPC have demonstrated a clear advantage for preserving salivary functions with IMRT (Peter et al 2004) (Tham et al 2009).

The middle ear is exposed to a significant dose of radiation during treatment of nasopharyngeal carcinoma (NPC). This exposure can lead to otitis media with effusion (OME) which is a very common problem during or after the completion of radiotherapy and can persist for many years after treatment. The rate of OME in the IMRT arm was less than the 3D-DRT arm significantly (p-value <0.05)(Sheng et al 2009).

In another report, the frequency of radiation-induced damage to ear function was as high as 54%, second only to xerostomia, as the most common complication associated with the treatment of NPC. The incidence of radiation-induced OME is as high as 26% and is characterized by deafness, tinnitus, and pain in the ear. Eustachian tube (ET) function is the poorest at 6 months after treatment and can last for life (Yeh et al 2005).

Inspite of several dosimetric and functional superiority of IMRT over 3D- CRT, yet there are several concerns regarding this new technique i.e higher doses to undefined tissues, second malignancy, 4 fold increase in monitor units per treatment which is reflected on overload on radiotherapy machines specially in busy departments. Furthermore, the higher cost and longer time required to start treatment are extraconcerns. Longer follow up of large patient cohort is needed to prove the cost-effectiveness of this new technique.

Aim of Work

The study was conducted to compare 3D conformal radiation therapy and intensity modulated radiation therapy as newer modalities in treating nasopharyngeal carcinomas; evaluating and comparing both techniques as regard their efficacy on tumor response, local control and treatment related toxicity as well as a dosimetric comparison between both techniques.