RATIONALIZATION OF WATER CONSUMPTION OF TOMATO PLANTS GROWN UNDER SANDY SOIL CONDITIONS

By

SAMEH MOHAMED MOHAMED EL-SAWY

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2001 M. Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2009

A thesis submitted in partial fulfillment

Of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agriculture Science (Vegetable Crops)

Department of Horticulture Faculty of Agriculture Ain Shams University

Approval Sheet

RATIONALIZATION OF WATER CONSUMPTION OF TOMATO PLANTS GROWN UNDER SANDY SOIL CONDITIONS

By

SAMEH MOHAMED MOHAMED EL-SAWY

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2001 M. Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2009

This thesis for Ph.D. degree has been appro	oved by:
Dr. Kawther Kamel Ahmed Dawa	•••••
Prof. Emeritus of Vegetable Crops, Masoura University.	Faculty of Agriculture
Dr. Mohamed Hashem AL-Deep	•••••
Prof. Emeritus of Vegetable Crops, Fac Shams University.	culty of Agriculture, Air
Dr. Mohamed Emam Ragab	•••••
Prof. of Vegetable Crops, Faculty of University.	Agriculture, Ain Shams

Date of Examination: 12 / 4 / 2016

RATIONALIZATION OF WATER CONSUMPTION OF TOMATO PLANTS GROWN UNDER SANDY SOIL CONDITIONS

By

SAMEH MOHAMED MOHAMED EL-SAWY

B. Sc. Agric. Sc. (Horticulture), Ain Shams University, 2001 M. Sc. Agric. Sc. (Vegetable Crops), Ain Shams University, 2009

Under the supervision of:

Dr. Mohamed Emam Ragab

Prof. of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University (Principal Supervisor).

Dr. Nesreen Ahmed Sabry Helal

Lecturer of Vegetable Crops, Department of Horticulture, Faculty of Agriculture, Ain Shams University.

Dr. Omaima Mohamed Mohamed Sawan

Researcher Prof. Emeritus of Vegetable Crops, Vegetable Research Dept., Agriculture and Biological Research Division, National Research Centre.

ABSTRACT

Sameh Mohamed Mohamed El-Sawy: Rationalization of Water Consumption of Tomato Plants Grown Under Sandy Soil Conditions. Unpublished Ph. D. Thesis, Department of Horticulture, Faculty of Agriculture, Ain Shams University, 2016.

Field experiment was carried out during the two growing seasons of 2012/2013 and 2013/2014, in a private farm at Bani Salama region, El-Giza Governorate, Egypt, in order to investigate the effect of deficit irrigation (DI) treatments (100% (control), 85%, 70% and 55% of ET_o (Reference evapotranspiration)), irrigation systems (surface drip irrigation (SDI) and subsurface drip irrigation (SSDI) (with 20cm soil depth)) and foliar application of glycine betaine concentrations (GB) (at 0, 5, 10 and 20 mM/l, applied after 2 and 6 weeks from transplanting date), on vegetative growth, fruit yield and quality of tomato plants (Marwa hybrid) grown under sandy soil conditions.

Results indicated that DI treatments (85%, 70% and 55% of ET_o) significantly decreased the vegetative growth (plant length, number of leaves per plant, total leaves area per plant and fresh and dry weights of tomato leaves per plant), flowering (number of flowers, number of clusters per plant) and fruit yield (number of fruits per plant and total marketable yield) parameters for tomato plants. Where, the highest significant values were obtained by the full irrigation treatment 100% ET_o (control) and the lowest values were noticed with 55% ET_o treatment. Similarly, photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids), leaf relative water content (LRWC), membrane stability index (MSI), leaves mineral content parameters were reduced with decreasing irrigation water levels. In contrast, there were positive effects on proline content of tomato leaf and some fruit quality characteristics (TSS, total sugars, ascorbic acid content and titratable acidity) for tomatoes, as well as on irrigation water use efficiency (IWUE).

Subsurface drip irrigation system produced the highest significant values for vegetative growth, flowering and fruit yield and quality

parameters, compared to SDI system, as well as the highest significant values for LRWC, MSI and IWUE were observed with SSDI system in the both tested seasons. Results showed that when DI treatments (85%, 70% and 55% ET_o) decreased total marketable yield by (16.05%, 26.73% and 46.61%) and (16.01%, 27.29% and 46.96%), while SSDI system positively increased it by (4.31% and 4.85% and 4.38%) and (2.49%, and 5.54% and 5.80%), in the first and second seasons, respectively.

Foliar application of GB at 10 mM/l ameliorated the negative effects of water stress and produced the highest significant values of vegetative growth, flowering parameters, photosynthetic pigments, LRWC and MSI in the both studied seasons. While, there were no significant differences were realized among the GB treatments on the most of fruit quality characteristics. Results reported that, When DI treatments (85%, 70% and 55% ET_o) decreased total marketable yield by (14.38%, 25.08% and 48.77%) and (14.23%, 24.78% and 47.03%), the foliar application of glycine betaine (at 10 mM/l) increased it by (10.95%, 10.11% and 22.85%) and (12.92%, 9.26% and 20.74%), in the first and second seasons, respectively.

The interaction among DI treatments, irrigation systems (IS) and foliar application of GB illustrated that tomato plants were irrigated by 100% and 85% ET_o with SSDI system and foliar application of GB at 10 mM/l had the highest significant values for vegetative growth, flowering and fruit yield and quality of tomato plants under open field conditions. It was also concluded that the vegetative growth and fruit yield as well as fruit quality of tomato plants which grown under DI conditions, can be enhanced by using SSDI system and foliar application of GB at 10 mM/l.

Key words: Tomato, Deficit irrigation, Irrigation systems, Subsurface drip irrigation, Glycine betaine, Yield, Fruit quality, IWUE, LRWC, MSI.

ACKNOWLEDGEMENT

Praise and thanks to **Allah**, who guided and helped us to achieve this work.

The writer wishes to express his gratitude and sincere thanks to **Prof. Dr. Mohamed Emam Ragab**, Professor of Vegetable Crops, Dept. of Horticulture, Faculty of Agric., Ain Shams Univ., for his supervision, kind help, moral and faithful attitude during the preparation of this manuscript, follow up, constructive ideas and advice and reviewing the manuscript.

My grateful thanks to **Dr. Nesreen Ahmed Sabry Helal,** Lecturer of Vegetable Crops, Dept. of Horticulture, Faculty of Agric., Ain Shams Univ., for her kind supervision and valuable assistance during the work.

Deepest and sincere gratitude and appreciation to **Dr. Yasser Ezzat Hashem Arafa,** Assistant Prof. Agricultural Engineering Dept., Faculty of Agric., Ain Shams Univ., for his kind supervision and valuable assistance during the work.

Sincere and deep gratitude to **Prof. Dr. Omaima Mohamed Mohamed Sawan,** Professor Emeritus of Vegetable Crops Dept.,
National Research Centre, for her supervision, encouragement and valuable helping throughout this study.

My sincere thanks, gratitude and appreciation to **Prof. Dr. Zakaria Fouad Fawzy and Prof. Dr. Abd El-Mohsen El-Basiony,** Professors of Vegetable Crops Dept., National Research Centre, for their continuous supervision, valuable help and Keen review.

My sincere thanks, gratitude and appreciation to **Prof. Dr. Taha El-Shorbagy** and **Dr. Emad El-din Hassanein Abd El-Samad,** Professors of Vegetable Crops Dept., National Research Centre, for their kind help and facilities granted during this work.

My grateful thanks to **all staff members of Vegetable Research Dept.,** National Research Centre.

My heart full thanks and sincere appreciation to **my family**, for their helpful support and encouragement all over my life.

CONTENTS

		Page
	LIST OF TABLES	III
	LIST OF FIGUERS	\mathbf{X}
	LIST OF ABBREVIATIONS	XII
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	3
2.1.	Effect of deficit irrigation (DI) on	4
2.1.1.	Vegetative growth characteristics	5
2.1.2.	Flowering and fruit yield characteristics	8
2.1.3.	Fruit quality parameters	11
2.1.4.	Chemical contents	14
2.1.4.1.	Photosynthetic pigments of tomato leaves	14
2.1.4.2.	Chemical constituents of tomato plant	16
2.1.5.	Water measurement	17
2.2.	Effect of irrigation systems on	19
2.2.1.	Vegetative growth characteristics	20
2.2.2.	Flowering and fruit yield characteristic	21
2.2.3.	Fruit quality parameters	24
2.2.4.	Chemical contents.	25
2.2.5.	Water measurements	27
2.3.	Effect of glycine betaine (GB) concentrations	29
2.3.1.	Vegetative growth characteristics	30
2.3.2.	Flowering and fruit yield characteristics	32
2.3.3.	Fruit quality parameters	34
2.3.4.	Chemical contents	35
2.3.5.	Water measurements	37
3.	MATERIALS AND METHODS	39
4.	RESULTS AND DISCUSSION	51
4.1.	Effect of deficit irrigation (DI), irrigation systems (IS),	
	foliar application of glycine betaine (GB) and their	
	interactions on vegetative growth characteristics of	
	tomato plants	51

	ARABIC SUMMARY	
6.	REFERNCES	154
5.	SUMMARY AND CONCLUSION	147
	interactions on water measurements for tomato plants	140
	foliar application of glycine betaine (GB) and their	
4.7.	Effect of deficit irrigation (DI), irrigation systems (IS),	
	interactions on chemical contents for tomato fruits	130
r.U.	foliar application of glycine betaine (GB) and their	
4.6.	Effect of deficit irrigation (DI), irrigation systems (IS),	120
	interactions on mineral elements in tomato leaf	120
т.Ј.Ј.	foliar application of glycine betaine (GB) and their	
4.5.3.	Effect of deficit irrigation (DI), irrigation systems (IS),	
	interactions on proline content in tomato leaf	117
1.5.2.	foliar application of glycine betaine (GB) and their	
4.5.2.	Effect of deficit irrigation (DI), irrigation systems (IS),	11(
	interactions on photosynthetic pigments in tomato leaf	110
	foliar application of glycine betaine (GB) and their	
4.5.1.	Effect of deficit irrigation (DI), irrigation systems (IS),	
	interactions on chemical contents for tomato leaves	110
	foliar application of glycine betaine (GB) and their	
4.5.	Effect of deficit irrigation (DI), irrigation systems (IS),	,,
4.4.2.	Chemical fruit quality characteristics of tomato fruits	99
4.4.1.	Physical fruit quality characteristics of tomato fruits	91
	fruits	91
	interactions on fruit quality characteristics of tomato	
4.4.	foliar application of glycine betaine (GB) and their	
4.4.	Effect of deficit irrigation (DI), irrigation systems (IS),	00
	plants	80
	interactions on fruit yield characteristics of tomato	
4.3.	Effect of deficit irrigation (DI), irrigation systems (IS), foliar application of glycine betaine (GB) and their	
4.3.		00
	foliar application of glycine betaine (GB) and their interactions on flowing characteristics of tomato plants.	68
4.2.	Effect of deficit irrigation (DI), irrigation systems (IS),	
12	Effect of deficit irrigation (DI) irrigation systems (IS)	

LIST OF TABLES

Table		Page
1.	Physical and chemical properties of experimental soil	
	analysis	39
2.	Chemical properties of irrigation water analysis	40
3.	Metrological data (monthly maximum and minimum air	
	temperatures, relative humidity and total rain) in	
	2012/2013 and 2013/2014 seasons	41
4.	Irrigation requirements (liter/plant per day) for irrigation	
	treatments (100%, 85%, 70% and 55% of $ET_{\mbox{\tiny o}})$ for tomato	
	plants in open field cultivation during both seasons of	
	2012/2013 and 2013/2014	44
5.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	plant length (cm) of tomato plant during 2012/2013 and	
	2013/2014 seasons	50
6.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	number of leaves of tomato plant during 2012/2013 and	
_	2013/2014 seasons	51
7.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	number of branches of tomato plant during 2012/2013 and	50
0	2013/2014 seasons	52
8.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on the total leaf area (m^2) of towards plant during $2012/2013$ and	
	total leaf area (m ²) of tomato plant during 2012/2013 and	52
	2013/2014 seasons	53

9.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	fresh weight of leaves (g) of tomato plant during	
	2012/2013 and 2013/2014 seasons	54
10.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on dry	
	weight of leaves (g) of tomato plant during 2012/2013 and	
	2013/2014 seasons	55
11.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on the	
	number of clusters of tomato plant during 2012/2013 and	
	2013/2014 seasons	67
12.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on the	
	number of flowers of tomato plant during 2012/2013 and	
	2013/2014 seasons	68
13.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	number of days to the first flower of tomato plant during	
	2012/2013 and 2013/2014 seasons	69
14.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	fruit setting percentage (%) of tomato plant during	
	2012/2013 and 2013/2014 seasons	70
15.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on the	
	number of fruits of tomato plant during 2012/2013 and	
	2013/2014 seasons	80
16.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on the	
	total marketable yield (ton/fed.) of tomatoes during	
	2012/2013 and 2013/2014 seasons	81

17.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on the	
	fruit yield of tomato plant (g) during 2012/2013 and	
	2013/2014 seasons	82
18.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	average fruit weight (g) of tomato fruits during 2012/2013	
	and 2013/2014 seasons	91
19.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	fruit size (cm ³) of tomato fruits during 2012/2013 and	
	2013/2014 seasons	92
20.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions fruit	
	diameter (cm) of tomato fruits during 2012/2013 and	
	2013/2014 seasons	93
21.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	TSS (%) of tomato fruits during 2012/2013 and 2013/2014	
	seasons	99
22.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	titratable acidity (mg citric acid /100 ml juice) of tomato	
	fruits during 2012/2013 and 2013/2014 seasons	100
23.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	fruit test of tomato fruits during 2012/2013 and 2013/2014	
	seasons	101
24.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	V.C (mg ascorbic acid/100 ml juice) tomato fruits during	
	2012/2013 and 2013/2014 seasons	102

25.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	total sugar (%) of tomato fruits during 2012/2013 and	
	2013/2014 seasons	103
26.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	lycopene content (mg/100g F.W.) of tomato fruits during	
	2012/2013 and 2013/2014 seasons	104
27.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	nitrate (NO ₃) percent (%) in tomato fruits during	
	2012/2013 and 2013/2014 seasons	105
28.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	chlorophyll a content (mg/g F.W.) of tomato leaves during	
	2012/2013 and 2013/2014 seasons	109
29.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	chlorophyll b content (mg/g F.W.) of tomato leaves during	
	2012/2013 and 2013/2014 seasons	110
30.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	chlorophyll a and b content (mg/g F.W.) of tomato leaves	
	during 2012/2013 and 2013/2014 seasons	111
31.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	carotenoids content (mg/g F.W.) of tomato leaves during	
	2012/2013 and 2013/2014 seasons	112
32.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	free proline (µg/g DW) contents in tomato leaves during	
	2012/2013 and 2013/2014 seasons	116

33.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on N	
	percent (%) of tomato leaves during 2012/2013 and	
	2013/2014 seasons	1
34.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on P	
	percent (%) of tomato leaves during 2012/2013 and	
	2013/2014 seasons	1
35.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on K	
	percent (%) of tomato leaves during 2012/2013 and	
	2013/2014 seasons	1
36.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on Ca	
	percent (%) of tomato leaves during 2012/2013 and	
	2013/2014 seasons	1
37.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on Fe	
	percent (ppm) of tomato leaves during 2012/2013 and	
	2013/2014 seasons	1
38.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on Mg	
	(%) of tomato plant during 2012/2013 and 2013/2014	
	seasons	1
39.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on N	
	(%) of tomato fruits during 2012/2013 and 2013/2014	
	seasons	1
40.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on P	
	(%) of tomato fruits during 2012/2013 and 2013/2014	
	seasons	1

l .	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on K	
	(%) of tomato fruits during 2012/2013 and 2013/2014	
	seasons	1
2.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on Ca	
	(%) of tomato fruits during 2012/2013 and 2013/2014	
	seasons]
3.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on Fe	
	(ppm) of tomato fruits during 2012/2013 and 2013/2014	
	seasons	
I.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on Cu	
	(ppm) of tomato fruits during 2012/2013 and 2013/2014	
	seasons	
	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on Zn	
	(ppm) of tomato fruits during 2012/2013 and 2013/2014	
	seasons	
ĺ.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on Mn	
	(ppm) of tomato fruits during 2012/2013 and 2013/2014	
	seasons	
•	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on the	
	irrigation water use efficiency (IWUE) (kg/m3) of tomato	
	plants during 2012/2013 and 2013/2014 seasons	
3.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on leaf	
	relative water content (LRWC) (%) of tomato plant during	
		1

49.	Effect of deficit irrigation, irrigation systems, foliar	
	application of glycine betaine and their interactions on	
	membrane stability index (MSI) of tomato leaves during	
	2012/2013 and 2013/2014 seasons	142