EVALUATION OF POSTERIOR MICROSCOPIC CERVICAL FORAMINOTOMY IN MANAGEMENT OF CERVICAL DISC DISEASE

Thesis

Submitted for Partial Fulfillment of The Doctorate Degree (M.D) in **Neurosurgery**

By

Ahmed M. Allam (M.B, B.CH, M.Sc.)

Supervised by

Prof. Dr. Ismael Ibrahim

Professor of Neurosurgery, Faculty of Medicine, Cairo University

Prof. Dr. Nasser El-Ghandour

Professor of Neurosurgery, Faculty of Medicine, Cairo University

Prof. Dr. Wael El-Mahdy

Professor of Neurosurgery, Faculty of Medicine, Cairo University,

Dr. Ahmed Hegazy

Assistant Professor of Neurosurgery, Faculty of Medicine, Cairo University

> Faculty of Medicine Cairo University 2012

بسم الله الرحمن الرحيم

ACKNOWLEDGMENTS

It's a pleasure to acknowledge deep gratefulness I owe to **Prof. Dr. Ismail Ibrahim**, Professor of Neurosurgery, Faculty of Medicine, Cairo University whose expertise, lucid presentation and fatherly help have eased my task.

I would like to express my gratitude and immense indebtedness to **Prof. Dr. Nasser El-Ghandour** Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his precious guidance, invaluable support and generous supervision.

I pay a very special tribute to **Prof. Dr. Wael El-Mahdy**, Professor of Neurosurgery, Faculty of Medicine, Cairo University, for his teaching, unlimited help, valuable advice and generous supervision.

My Gratitude to **Prof. Dr. Ahmed Hegazy**, for his surgical guidance and support and unlimited help advice and effort.

I am honored to express my sincere thanks and profound gratitude to **Prof. Dr. Abdel-Alim Ragab** and **Prof. Dr. Essam Rashad**, for their unfailing support, encouragement, valuable advice and unlimited help and kindness.

CONTENTS

		Page
-	Introduction	1
-	Aim of the Work	3
-	Review of Literature	4
	o Surgical Anatomy	4
	o Spinal Biomechanics	28
	o Pathophysiology of Cervical disc Disease	35
	o Epidemiology	46
	o Clinical presentation of Cervical Radiculopathy	47
	o Investigations	57
	o Treatment of cervical radiculopathy	66
-	Patients and Methods	86
-	Results	99
-	Case Presentation	116
-	Discussion	133
-	Summary and Conclusion	145
-	References	148
•	Arabic Summary	159

LIST OF TABLES

No.	Title	Page
1	Function and innervations of cervical spine muscles	26
2	Check list for the diagnosis of clinical instability in the	32
	lower cervical spine	
3	Incidence of nerve root condition in the neural foramen	42
4	Thompson's classification scheme for disc degeneration	45
5	The cervical radicular syndromes	54
6	Conditions that can mimic specific cervical radicular	56
	syndromes	
7	MRC Grading system for muscle strength	87
8	Muscle stretch reflex grading scale	87
9	Sex distribution in the study group	99
10	Age among the study group	100
11	Frequency of symptoms among the study group	101
12	Frequency of signs among study group	102
13	Distribution of the operated levels	105
14	Association between transient ISP and outcome	107
15	Outcome among the study	108
16	Showing frequency of motor deficit improvement at 12 month follow	109
17	Association between previous ACDF and outcome	110
18	Association between number of leveles and outcome	111
19	Association between operated level and outcome	112
20	Association between age and outcome	112
21	Association between cervical curve and outcome	113
22	Association between compressing pathology and outcome	114
23	Microscopic and endoscopic foraminotomy in various series	142
24	Anterior cervical discectomy in various series	142

LIST OF FIGURES

No.	Title	Page
1	A cervical vertebra	6
2	Side view of a typical cervical vertebra	6
3	First cervical vertebra, or atlas	9
4	Second cervical vertebra, or epistropheus, from above	11
5	Second cervical vertebra, epistropheus, or axis, from the	11
	side	
6	Seventh cervical vertebra	12
7	Sagittal section of the cervical spine	15
8	Interverteberal disc	17
9	Facet joint Orientation	18
10	Facet joint structures	19
11	A, axial CT scan through the neural foramen. B, a sagittal	21
	reformatted CT scan through the cervical neural foramen	
12	Cervical foramen	21
13	Ligaments of cervical spine	23
14	Deep muscles of posterior cervical spine	24
15	Posterior cervical muscles, nerves	25
16	Cadaveric dissection, axial cut at the C3 level, is shown	27
	before (left) and after (right) the lamellar portion of the	
	nuchal ligament has been separated	
17	Cobb method	31
18	Axial T2 MRI image (A) and CT scan (B) in a patient with a	35
	leftC6 radiculopathy. There is a left-sided C5 to C6	
	osteophyte causing neural foraminal stenosis and C6 nerve	
	root compression.	
19	Axial T2 MRI demonstrating C7-T1 disc herniations	36
20	Herniation types of nucleus pulposus	39
21	A, the nonpathological state, in which the dorsal vertebral	40
	body height is less than the ventral vertebral body height,	
	results in normal cervical lordosis. B, loss of the ventral disc	
	interspace height, which occurs with the natural	
	degenerative process, results in loss of lordosis. This causes	
	elongation of the moment arm applied to the spine (D),	
	leading to ventral vertebral body compression. C, a further	
	exaggeration of pathological kyphotic posture may then	
	ensue	

No.	Title	Page
22	Axial CT scans of a patient with a lateral cervical	42
	osteophyte	
23	Dynamic views of cervical spine	58
24	Axial cervical CT myelogram demonstrates marked	59
	hypertrophy of the right facet joints	
25	Neural foramenon axial T2 MRI	61
26	45-degree oblique view MRI showing evident osteophyte/	62
	dic complex at C5/C6	
27	Right C7 cervical transforaminal epidural steroid injection	72
28	Cervical epidural steroid injection at the C7-T1 interlaminar	73
	space	
29	Surgical Approaches for the Treatment of Cervical	75
	Radiculopathy	
30	Anterior cervical discectomy	80
31	Restoration of lordosis	81
32	Patient positioning for posterior foraminotomy	89
33	Intraoperative fluoroscopy, for level confirmation	90
34	Posterior foraminotomy marked	92
35	Sequential intraoperative photomicrographs of a left-sided	94
	hemilaminotomy and medial facetectomy with the removal	
	of an extruded disc.	
36	A and B: Preoperative views. C: Location of laminotomy	95
	and foraminotomy. the lateral portions of the lamina and	
	medial facet joint are drilled.	
37	Post operative sagittal reconstruction CT scan	96
38	Post operative axial CT scan	96
39	Sex distribution Pie chart	99
40	Age among the study group	100
41	Duration of symptoms among the study group	101
42	Frequency of symptoms	102
43	Frequency of signs among the study group	103
44	Pie chart showing side of radiculopathy among the study	103
4.5	group	404
45	Pie charts showing state of cervical spine curve amog the	104
4.5	study group	40.0
46	Pie chart presenting different compressing pathologies	106
4-	among the study.	40.0
47	Bar chart presenting mean and median operative time	106
48	Study Outcome	108

No.	Title	Page
49	Association between Previous ACDF and outcome	110
50	Association between number of leverls and outcome	111
51	Association between age and outcome	112
52	Association between outcome and cervical lordosis	113
53	Association between outcome and disc pathology	114
54	Bar chart showing follow up period among the series	115
55	Pre-operative lateral plain x- ray	117
56	Pre-operative MRI	117
57	Pre-operative CT scan (bone window)	118
58	Post-operative CT scan (bone window)	118
59	Post operative CT scan (sagittal reconstruction)	119
60	Pre-Operative CT scan (bone window)	121
61	Pre-Operative MRI (axial)	121
62	Pre-Operative MRI (sagittal)	122
63	Post-Operative CT (bone window)	122
64	Pre-Operative MRI	124
65	Pre-Operative CT	124
66	Post-Operative CT	125
67	Post-Operative CT (sagittal reconstruction)	125
68	Pre-Operative MRI (axial)	127
69	Pre-Operative MRI (sagittal)	127
70	Post-Operative CT (bone window)	128
71	Post-Operative CT (soft tissue)	128
72	Post-Operative plain x-ray at 12 months follow up	129
73	Pre-Operative MRI (axial T2)	131
74	Pre-Operative MRI (axial T1)	131
75	Pre-Operative MRI (sagittal)	132
76	Post-Operative CT	132

ABBREVIATIONS

ACD : Anterior cervical discectomy

ACDF : Anterior cervical discectomy and fusion

Ant. : Anterior C : Cervical

CSF : Cerebrospinal fluid

CT : Computerized tomography DDD : Degenerative disc disease

DTPA : Diethylenetriamine pentaacetic acid

EMG : Electromyography

HNP : Herniated nucleus pulposusIDD : Internal disc disruption

Lt : Left

mm : Millimeter

MRI : Magnetic resonance imagingNCS : Nerve conduction studies

no. : Number

NSAIDs : Non steroidal anti- inflammatory drugs

PLL : Posterior longitudinal ligament

ROM : Range of motion

Rt : Right

SD : Standard deviation

SEP : Somatosensory evoked potentials

T : Thoracic

TCAs : Tricyclic antidepressants

ABSTRACT

Objective: This study details assessment of the indications, safety, efficacy and complications of posterior microscopic cervical foraminotomy for treatment of cervical radiculopathy associated with cervical foraminal disc herniation and / or cervical foraminal stenosis of degenerative etiology. Methods: A prospective study conducted on 31 patients with unilateral single or double level cervical radiculopathy due to cervical degenerative disc disease confirmed by concordant clinical and radiological data, refractory to non-surgical measures for 3 months at least, admitted and operated at Kasr El-Ainy university hospitals between March 2009 and August 2010. Outcomes were assessed by using the Odom's criteria. **Results:** Average age of presentation was 44.1 years, male to female ratio was 1:1.8, and average duration of symptoms was 51.4 weeks. 21 cases had left sided radiculopathy, 10 cases had right sided affection. The most common presenting symptom after brachialgia (100%) was neck pain (87%), most common sign was hyporeflexia (67%). Most common operated level was C5-6 (50%). Excellent and good outcomes were obtained in 87% of the patients. The mean follow up period was 14.5 months with no recurrence, instability or progressive kyphosis. Conclusion: Microscopic posterior cervical foraminotomy is a safe and effective approach for treatment of cervical radiculopathy resulting from foraminal hard and soft disc pathologies with comparable results to the ACDF approach.

Key words:

Cervical spine, Disc herniation, Foraminotomy, Radiculopathy, Neural foramen

INTRODUCTION

INTRODUCTION

Cervical radiculopathy is typically characterized as pain in the anatomic distribution of a single cervical nerve root. Sensorimotor impairment of the same nerve root may or may not be simultaneously present. Not uncommonly, multiple nerve roots may be affected simultaneously, leading to multilevel radiculopathy (*Carette and Fehling*, 2005).

Cervical radiculopathy is usually the result of either a soft lateral disc displacement or spondylosis with resultant foraminal compromise caused either by a calcified disc, osteophyte, or both. (*Carette and Fehling*, 2005).

The management of cervical radiculopathy is a controversial area in spine surgery. Although most patients are thought to achieve resolution of symptoms without surgical intervention, recent data, including randomized controlled studies have provided evidence that surgical intervention may improve short-term disability related to pain when compared with conservative management (*Fouyas et al.*, 2002).

When surgical intervention is chosen, the surgical approach can vary significantly. Although posterior approaches have traditionally been favored in the management of radiculopathy (*Gregorius et al.*, 1976), in recent years anterior approaches have been favored by some due to the ease of exposure, wider exposure of the disc space, and less patient discomfort. Unfortunately, symptomatic adjacent-segment disease has been found to develop frequently with time after anterior cervical arthrodesis and affects long-term patient outcomes (*Jagannathan et al.*, 2008).

The posterior cervical approach was popularized by Spurling and Scoville (Scoville and Whitcomb, 1966) and Frykholm (*Frykholm*, 1947).

The results obtained in many early series were quite good, even by today's standards. The limitations of the posterior approach when used to treat compression located more centrally in the spinal canal. By 1955 Smith and Robinson (*Aronson et al.*, 1968) had pioneered the anterior approach for discectomy and fusion. The ACD was subsequently modified by Cloward (*Cloward*, 1958) and then by proponents of ACD without fusion. Although during the ensuing three to four decades the anterior approach for cervical disc disease became more widely used, there were some advocates of the posterior approach who reported obtaining good results in large series of patients (*Jagannathan*, 2009).

Progress in imaging techniques has allowed for much more thorough preoperative assessment and characterization of the specific indications for the posterior approach.

There are clear advantages of performing a posterior cervical foraminotomy, particularly in patients with cervical radiculopathy. Posterior decompression allows better access to eccentrically located disc fragments while obviating the need for retraction on the esophagus and laryngeal nerve, which can result in postoperative dysphagia and hoarseness following anterior approaches. Additionally, pseudarthrosis, graft subsidence, and kyphosis, which are well-reported complications of ACDF, can be eliminated when a posterior foraminotomy is performed (*Coric and Adamson, 2008*).

AIM OF THE WORK