Prediction of perinatal outcome in fetuses with intrauterine growth restriction by Doppler ultrasonographic evaluation

THESIS

Submitted for partial Fulfillment of MD degree In Radiodiagnosis

INVESTIGATOR

Wessam Abd El-Rahman Mahmoud Elzayat

M.B; B.Ch, M.Sc Assistant lecturer of Radiodiagnosis Cairo University

SUPERVISORS

Prof. Dr. Dorria Saleh Salem

Professor of Radiodiagnosis Faculty of Medicine Cairo University

Prof. Dr. Soha Talaat Hamed

Professor of Radiodiagnosis
Faculty of Medicine
Cairo University

Dr. Eman Abd Elmonem El Kattan

Lecturer of Obstetrics and Gynecology Faculty of Medicine Cairo University

> Faculty of Medicine Cairo University 2012

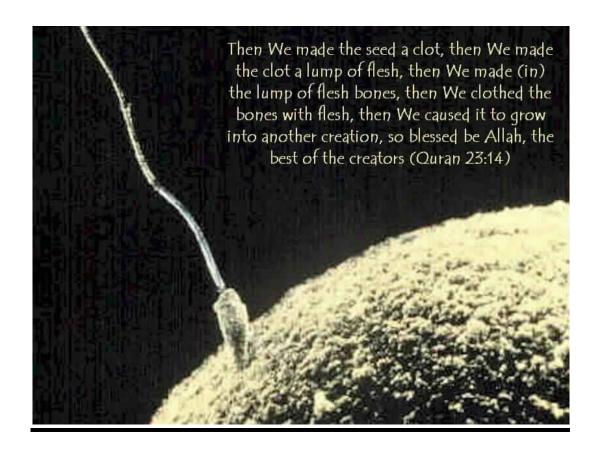
Acknowledgement

F irst and foremost I feel always indebted to *ALLAH*, the most kind and the most merciful.

I would like to express my sincere thanks and deep gratitude to *Prof. Dr. Dorria Saleh*Salem, Professor of Radiodiagnosis, Faculty of Medicine, Cairo University, for her encouragement, support and her extreme effort in making this study possible, certainly I am greatly honored and pleased to have had the opportunity to work under her supervision.

No words can do justice to the continuous encouragement and tremendous support by which *Prof. Dr.*Soha Talaat Hamed, Professor of Radiodiagnosis, Faculty of Medicine, Cairo University, has tirelessly supervised and generously advised me through every stage of my work, I was fortunate learn from her creative advice and expanded experience

I owe a lot to *Dr. Eman Abd EI-Monem EI Kattan*, lecturer of Obstetrics and Gynecology, F aculty of Medicine, Cairo U niversity, for enlightening me in so many ways regarding the clinical aspects of this study with such a patient and delightful nature.


I must also express my deep gratitude to my professors, my colleagues and my friends in the radiology department of K asr E I Aini hospital.

All my love and appreciation goes to my late father, sister, brother & daughters for their support & encouragement.

F inally no thanks can be enough to my partner, my soul mate and my husband's enormous support without which I believe I would not have been able to complete this study.

Wessam E I Z ayat

"ثم جعلنا النطفة علقة فخلقنا العلقة مضغة فخلقنا المضغة عظاما فكسونا العظام لحما ثم أنشأناه خلقا آخر فتبارك الله أحسن الخالقين"

سورة المؤمنون آية <u>١٤</u>

Table of Contents

	Content	Page	
	List of figures	i	
	List of tables	V	
	List of abbreviation	vii	
	Abstract	ix	
	Introduction	1	
	Aim of work	3	
	Review of literature	4	
Background	Anatomy, Pathology &Pathophysiology	4	
Chapter I	IUGR	14	
Chapter II	Doppler study	34	
Chapter III	The BPP	51	
Chapter IV	Management of IUGR	57	
	Patients and methodology	63	
	Results	69	
	Case presentation	87	
	Discussion	104	
	Summary & conclusion 117		
References 119		119	
	Arabic summary	139	

List of Figures

F igure	T itle	
	Review of literature	Page
1 1 0.	Background	
Figure (1)	Changes in the uterine circulation during pregnancy	4
Figure (2)	Schematic representation of interstitial an endovascular trophoblast invasion in human pregnancy	6
Figure (3)	The fetal circulation showing representative oxygen saturation values	7
	Chapter I	
Figure (4)	Fetal weight percentiles throughout gestation	15
Figure (5)	Fetal biometry	28
Figure(5)*	Fetal biometric parameters	29
Figure (6)	Percentiles for amniotic fluid index based on gestational age	30
Figure(7)	Placental grading	31
Chapter II		
Figure (8)	Doppler indices derived from the maximum frequency shift envelope.	35
Figure (9)	Correlation between the resistance index (RI) and the systolic/ diastolic (S/D) ratio	37
Figure (10)	Uterine artery Doppler	39
Figure (11)	Umbilical artery Doppler	43
Figure (12)	Middle Cerebral Artery Doppler	45
Figure (13)	Normal DV Doppler wave form	48

Figure (14)	Abnormal DV wave form	50	
	Chapter III		
Figure (15)	Accelerations showing a transient increase of greater than 15bpm	53	
	Results		
Figure (16)	Demographic data (mean & standard deviation (SD))	69	
Figure (17)	Maternal pathology in the study group (percentage %)	70	
Figure (18)	Mode of Delivery	71	
Figure (19)	Cause of Termination.	71	
Figure (20)	Distribution of Doppler	73	
Figure (21)	Distribution of BPP	74	
Figure (22)	Distribution of Apgar score	75	
Figure (23)	Distribution of outcome parameters	76	
Figure (24)	Mean GA at delivery in relation to abnormal Doppler	77	
Figure (24)*	PH in relation to abnormal Doppler	78	
Figure (24) **	Apgar score in relation to abnormal Doppler	78	
Figure (25)	Poor outcome parameters related to Doppler	80	
Figure (26)	Mean GA at delivery in relation to BPP	81	
Figure (26)*	PH in relation to BPP	81	
Figure (26) **	Apgar score in relation to BPP	82	
Figure (27)	Poor outcome parameters related to BPP	83	

Figure (28)	Acidosis in relation to Doppler and BPP	84
Figure (29)	BPP in relation to Doppler	86
	Case presentation	
Figure. (30)	Case 1 ,fetal biometry	87
Figure (31)	Case 1 ,UA Doppler	87
Figure (32)	Case 1, MCA Doppler	88
Figure (33)	Case 1, DV Doppler	88
Figure (34)	Case 1, HR	89
Figure (35)	Case 1, EFW	89
Figure (36)	Case 2, AC	90
Figure (37)	Case 2, UA Doppler	90
Figure (38)	Case 2, MCA Doppler	91
Figure (39)	Case 2, DV Doppler	91
Figure (40)	Case 2, HR	92
Figure (41)	Case 2, AF max.vertical diameter	92
Figure (42)	Case 2, EFW	92
Figure (43)	Case 3, Fetal biometry	93
Figure (44)	Case 3, UA Doppler	93
Figure (45)	Case 3, MCA Doppler	94

Figure (46)	Case 3, DV Doppler	94
Figure (47)	Case 3, HR	95
Figure (48)	Case 3, AF max.vertical pocket	95
Figure (49)	Case 3, EFW	95
Figure (50)	Case 4, UA Doppler	96
Figure (51)	Case 4, DV Doppler	96
Figure (52)	Case 5, UA Doppler	98
Figure (53)	Case 5, MCA Doppler	98
Figure (54)	Case 5, DV Doppler	99
Figure (55)	Case 5, HR	99
Figure (56)	Case 5, Max. Vertical pocket	99
Figure (57)	Case 6, Fetal biometry	101
Figure (58)	Case 6, UA Doppler	101
Figure (59)	Case 6, MCA Doppler	101
Figure (60)	Case 6, DV Doppler	102
Figure (61)	Case 6, HR	102
Figure (62)	Case 6, AF Max. vertical pocket	102
	Discussion	
Figure (63)	Algorithm of management of IGUR ≥ 32 week	112

List of TableS

	⊤ able	
⊤able N o.	Review of literature	Page
IN U.	Chapter II	
Table (1)	UA Doppler indices.	42
Table (2)	MCA Doppler indices	44
Chapter III		
Table(3)	Biophysical profile scoring system	51
	Patients and Methodology	
Table(4)	Apgar score	66
	Results	
Table (5)	Demographic data	69
Table (6)	Maternal pathology in the study group	70
Table (7)	Laboratory investigations	71
Table (8)	Distribution of data of study material	72
Table (9)	Distribution of Doppler	73
Table (10)	Distribution of BPP.	74

Table (11)	Distribution of outcome parameters	75
Table (12)	Outcome parameters related to abnormal Doppler	77
Table (13)	Poor outcome parameters related to Doppler	79
Table (14)	Outcome parameters related to BPP	81
Table (15)	Poor outcome parameters related to BPP	83
Table (16)	Acidosis in relation to Doppler and BPP	84
Table (17)	BPP in relation to Doppler.	85
	Case presentation	
Table (18)	Case presentation Case 1,BPP score	89
Table (18) Table (19)		89 92
· , ,	Case 1,BPP score	
Table (19)	Case 1,BPP score Case 2,BPP score	92
Table (19) Table (20)	Case 1,BPP score Case 2,BPP score Case 3,BPP score	92

list of Abbreviations

AC	Abdominal Circumference
AEDF	Absent End Diastolic Flow
AFI	Amniotic Fluid Index
AFV	Amniotic Fluid Volume
APD	Anteroposterior Diameter
AUA	Average Ultrasound Age
BMI	Body Mass Index
BPD	Bi-Parietal Diameter
BPM	Beats Per Minute
BPP	Biophysical Profile
CNS	Central Nervous System
CRL	Crown Rump Length
CST	Contraction Stress Test
CTG	Cardiotocography
C/U	Cerebro-Umbilical ratio
CVS	Cardiovascular System
DV	Ductus Venosus
ECG	Echocardiography
EFW	Estimated Fetal Weight
FAA	Fetal Abdominal Area
FBS	Fasting Blood Sugar
FGR	Fetal Growth Restriction.
FHR	Fetal Heart Rate
FL	Femur Length
FVW	Flow Velocity Waveform
GA	Gestational age
GIT	Gastrointestinal Tract
GRF	Growth Restricted Fetus
GRIT	nal TrialGrowth Restriction Interventio
GTT	Glucose Tolerance Test
GUT	Genitourinary Tract
HC	Head Circumference
IUGR	Intrauterine Growth Restriction
LBW	Low Birth Weight
LLD	Laterolateral Diameter
L/S	Lecithin Sphingomyelin Ratio
MCA	Middle Cerebral Artery
NICU	nsive Care UnitNeonatal Inte
NST	Non-Stress Test
PI	Ponderal Index
PI	Pulsatility Index

PIH	Pregnancy Induced Hypertension
REDF	Reversed End Diastolic Flow
RI	Resistivity Index
ROC	Receiver Operating Characteristic
SFH	Symphyseal Fundal Height
SGA	Small For Gestational Age.
UA	Umbilical Artery
UPI	Utero-placental insufficiency
WHO	World Health Organization

Abstract

BACKGROUND:

Multi-vessel Doppler ultrasonography and biophysical profile scoring are the principal surveillance tools in pregnancies complicated by fetal growth restriction. The interpretation of these tests done concurrently may be complex.

OBJECTIVE:

This study examines the relationship between arterial and venous Doppler and BPP results in IUGR fetuses and correlates their abnormalities with umbilical artery PH at birth to guide timing of delivery of these fetuses.

DESIGN:

Prospective observational study.

PATIENTS and METHODS:

50 patients diagnosed with intrauterine growth restriction (IUGR); all patients underwent uniform antenatal assessment protocol that includes a four component biophysical profile score and umbilical artery (UA), middle cerebral artery (MCA) and ductus venosus (DV) Doppler ultrasound studies. Most of the patients were delivered by caesarean section. Samples were obtained from the umbilical cord for cord artery PH. Apgar scores at 1 and 5 minutes were recorded.

OUTCOME:

Correlation of Doppler results, BPP and cord blood PH were analyzed.

RESULTS:

There was no significant decrease in GA at time of termination in cases of IUGR with abnormal DV-PIV compared to those with only abnormal UA-PI and MCA PI. Abnormal UA-Doppler was found in 19 patients (38%); 16 of them showed high PI (32%), 2 showed absent end diastolic flow (4%) and 1 showed reversed diastolic flow (2%). Abnormal MCA Doppler was found in 8 patients (16%) and abnormal DV Doppler was found in 9 patients (18%). The Abnormal DV Doppler

was significantly related to poor outcome parameter; pH < 7.20, low Apgar at 5-min and perinatal mortality; when compared with either Abnormal MCA or UA Doppler (p< 0.05). While there was no significant difference between MCA and UA Doppler abnormalities in detecting poor outcome (p> 0.05), BPP was normal in 33 patients (66%), equivocal in 9 patients (18%) and abnormal in 8 patient (16%). The Abnormal and equivocal BPP were significantly related to poor outcome parameter; pH < 7.20, low Apgar at 5-min and perinatal mortality; when compared with normal BPP. (p< 0.05).

CONCLUSION:

The conclusion of our study is that there is an important association between DV abnormalities and adverse neonatal outcomes suggesting that the assessment of this vessel is important to determine the timing of delivery. We also concluded that multi-vessel Doppler ultrasonography, and BPP can effectively stratify IUGR fetuses with placental vascular insufficiency into risk categories.

Keywords:

Doppler ultrasonography – Cardiotococraphy - Biophysical profile - Fetal growth restriction.