Surgical Techniques of Cochlear Implantation

Essay

Submitted for Partial Fulfillment of Masters Degree
In Otorhinolaryngology

By Ahmed Abd El MoneimTeama

M.B.B.Ch
Faculty of Medicine- Ain Shams University

Under Supervision of

Prof. Dr. Ossama Ahmed Abd El Hamid

Professor of Otorhinolaryngology Faculty of Medicine- Ain Shams University

Prof. Dr. TalaatAli El Samny

Professor of Otorhinolaryngology Faculty of Medicine- Ain Shams University

Dr. Amr Nabil Rabie

Assistant Professor of Otorhinolaryngology Faculty of Medicine- Ain Shams University

Faculty of Medicine
Ain Shams University
2014

<u>Acknowledgment</u>

I am thankful to **ALLAH** for granting me the will and power to finish this work

I would like to express my deepest gratitude and cardinal appreciation to **Prof Dr. Ossama Abdel Hamid,** Professor of Otorhinolaryngology, Faculty of Medicine, Ain shams University, for his great encouragement, sharing of his thoughts, experience, sound advice and precious guidance in the production of this work. Working under his supervision was indeed a great honour.

Also I wish to express my deep thanks to **Prof Dr. Talaat El Samny,** Professor of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, for his continuous support, kind cooperation and valuable advice, which have been of great help in the final outcome of this work.

My sincere gratitude to **Dr. Amr Nabil Rabie**, AssistantProfessor of Otorhinolaryngology, Faculty of Medicine, Ain Shams University, for his generous assistance, great help, valuable advice, and sacrifice of much of his precious time to make this work possible.

Finally, I would like to express my deepest thankfulness tomy parents, for their great help and support throughout my medical career.

Ahmed Abd El MoneimTeama

Contents

List of Tables	I
List of Figures	II
List of Abbreviations	VI
Introduction	1
Aim of the Work	4
Review of Literature	
- Chapter (1): Surgical anatomy	5
- Chapter (2): Radiological assessment	36
- Chapter (3): Cochlear implant devices	75
- Chapter (4): Candidate selection	89
- Chapter (5): Surgical techniques	111
- Chapter (6): Cochlear implant rehabilitation	158
- Chapter (7): Explantation and reimplantation	170
Summary	186
References	191
Arabic Summary	_

List of Tables

Table	Title	Page
1	Reference points for the apical, middle, and basal turns of the cochlea	12
	basai turns of the cochica	
2	Preoperative high resolution computed tomography examination for cochlear implantation	45
3	Key points for preoperative imaging studies for cochlear implantation	54
4	Comparison of devices according to companies	82
5	The cochlear implant pathway	110
6	Collection of complications data according to technique 1	153
7	Collection of complications data according to technique 2	154
8	Reasons for explantation	172
9	Failure rates among manufacturers	173
10	Indications for revision surgery	173
11	Revision surgeries in the literature	177

List of Figures

Figure	Title	Page
1	Temporal bone	6
2	The Facial Nerve	8
3	Posterior tympanotomy in a left ear, showing the anatomical relations	8
4	The medial wall of the tympanic cavity	10
5	Endoscopic view of the posterior medial wall of the tympanic cavity	10
6	Diagram of the cochlea and the oval and round windows	11
7	Inner ear structures	14
8	The Membranous Labyrinth	15
9	Cochlear cross-section	16
10	The cochlea and vestibule, viewed from above	17
11	Section of cochlea in the basal turn	17
12	Segmental anatomy of the basal turn of the cochlea	18
13	Lateral view of the cochlea and the medial wall of the tympanic cavity	20
14	Illustration of the turn of the bony spiral lamina in the basal turn of cochlea	22
15	Scanning electron micrograph of a section of the organ of Corti	25
16	Antero-lateral view of the cochlea	26
17	Illustrations of the cochlea in the plane perpendicular to the axis of the modiolus	28

Figure	Title	Page
18	Cochlear vasculature	32
19-22	Cochlear microdissection	33-35
23	CT the cochlea and the transmastoidal route of surgery	38
24	Patient positioning for examination of the temporal bone	39
25	MRI inner ear	40
26	FSE-MRI of a normal inner ear	41
27	MRI delineation of the cochlear nerve	44
28	MRI size and aspect of a normal cochlear tube	44
29	HRCT sections cochlea	46
30	Axial CT scan through the round window and cochlear basal turn	47
31	MRI scans of the internal auditory canal	48
32	CT cuts of the middle and inner Ear, axial	49-50
33	CT cuts of the middle and inner Ear, Coronal	50-51
34	MRI cuts of the inner Ear & IAC T2 Coronal	52-53
35-45	Radiology for inner ear congenital anomalies	57-63
46-52	Radiology for inner ear inflammatory conditions	63-66
53	Intra-operative CBCT scan	67
54-55	Stenver's view, normally positioned implant	68
56-59	Stenver's view, abnormally positioned implant	69-70
60	Illustration of the application of fMRI to examine candidates for CI	73

Figure	Title	Page
61	fMRI resulting from the stimulation of two	74
	different electrodes	
62	Early history of cochlear implants	77
63	Position of the internal and external portions of CI device	79
64	Cochlear implant device models	81
65	Nuroton implant	88
66	Processor Template	112
67	Implant template	112
68	Bone recess template	113
69	Electrode Claw	113
70	Incision planning	114
71	The evolution of the cochlear implantation incision	116
72	The well	117
73	Posterior Tympanotomy	118
74	Cochleostomy	119
75	Electrode insertion	120
76	Accessibility of the RWM in the RW-intentioned approach	121
77	Visualization of the anterior facial recess hole	128
78	EMA RW cochleostomy	128
79	Electrode inside the groove in EMA	129
80	Drawing of a section of the temporal bone through the facial recess for EMA	129

Figure	Title	Page
81-84	Suprameatal approach	132-
		133
85-86	Minimal access incision technique	136-
		137
87	Labyrinthotomy into common cavity	140
88-89	Endoscopic CI	142
90	Percentage of major and minor complications by approach	145
91	Complications for SMA and MPTAgroups	153
92	Cumulative CI revision rates	183

List of Abbreviations

Abb.	Meaning
3D	3 dimensions
ABI	Auditory brain stem implant
ABR	Auditory Brainstem Response
ACE	Advanced combination encoder
ADRO	Adaptive Dynamic Range Optimization
AICA	Anterior inferior cerebellar artery
ART	Auditory nerve Response Telemetry
ASSR	Auditory Steady State Response
BOLD	Blood oxygenation level dependent
BOR	brachio-oto-renal síndrome
BSL	Bony spiral lamina
BTE	Behind the ear
CAT	Combined approach technique
CBCT	Cone beam Computed tomography
CDC	Center for Disease Control
CI	Cochlear implant
CIS	Continuous interleaved sampling
\mathbf{CMV}	Cytomegalovirus
CSF	Cerebrospinal fluid
CT	Computed tomography
EABR	Electrical auditory brainstem response
EAC	External auditory canal
ECAP	Evoked compound action potentials
ECG	Electrocardiography
EEG	Electroencephalography
EEG	Electroencephalography
EMA	Endomeatal approach
ERG	Electroretinography
fMRI	Functional magnetic resonance imaging
FSE-MRI	Fast Spin Echo magnetic resonance imaging
HL	Hearing level

HRCT High resolution Computed tomography

Abb.	Meaning
IAC	Internal auditory canal
IAM	Internal auditory meatus
IHC	Inner hair cells
IP	Incomplete partition
ITMAIS	Infant Toddler Meaningful Auditory Integration
	Scale
LNT	Lexical Neighbor test
LO	Labyrinthitis ossificans
LOC	Lateral olivocochlear bundle
MCF	Middle cranial fossa
Med-El	Medical Electronic Corporation
MEG	Magnetoencephalography
MOC	Medial olivocochlear bundle
MPEAK	Multipeak
MPTA	Mastoidectomy-posterior tympanotomy approach
MRI	Magnetic resonance imaging
MSCT	Multislice computed tomography
NICU	neonatal intensive care unit
NMNPT	Non-mastoidectomy non-posterior tympanotomy
	technique
NRI	Neural Response Imaging
NRT	Neural Response Telemetry
OHC	Outer hair cells
PET	Positron emission tomography
PP	Postis posterior
RWN	Round window niche
SBC	Standard bony promontory cochleostomy
SD	Standard deviation
SMA	Suprameatal approach
SNHL	Sensory neural hearing loss
SPEAK	Spectral peak
VSS	Vessel Sealing System

Introduction

Cochlear implantation has proved to be an excellent therapy for patients with severe to profound sensorineural hearing loss. It restores the ability to hear sound and to understand speech to various degrees (Marel et al., 2011). With today's technology and the demonstrated success of cochlear implantation, candidacy criteria have greatly widened (Chen et al., 2009).

In cochlear implant surgery, there are three principal approaches: the classic approach, uses the facial recess, the suprameatal approach, does not require mastoidectomy and uses the creation of a tunnel over the facial nerve to enter the middle ear, and the endomeatal approach which is based on the completion of a groove in the posterior wall of external auditory canal (**Zernotti et al., 2012**).

The classical approach uses the facial recess for passage of electrodes from the mastoidectomy into the middle ear. This technique requires a simple mastoidectomy and a posterior tympanotomy. Access to the middle ear is narrow at this point and requires precision and experience, since the presence of the facial nerve requires certain risks to be assumed. Critics of the technique emphasise this point, arguing that this access can be

bypassed, thus avoiding the proximity of the facial nerve and its possible complications (**Zernotti et al., 2012**).

Alternative techniques to classic mastoidectomy and posterior tympanotomy for cochlear implantation have already been described but their main drawbacks result in either: the risk of an electrode extrusion through the skin as the groove is drilled into the auditory canal or the risk of a facial nerve injury as the tunnel is drilled blindly into the posterior canal wall (Guevara et al., 2010).

With a common cavity malformation, the transmastoid labyrinthotomy approach to the common cavity is an effective and simple technique for placing the electrode array (**Zarandy**, **2008**). Percutaneous cochlear implant surgery consists of a single drill path from the lateral mastoid to the cochlea via the facial recess cortex. Within all fields of surgery, there has been a push toward minimizing the invasiveness of procedures imageguided surgical systems (IGS) (**Labadie et al.**, **2008**).

The combined approach technique (CAT) is a variation of the classical technique, it combines a transcanal approach to cochleostomy with a reduced posterior tympanotomy for insertion of electrodes, a safe alternative approach in cochlear implant surgery, with no related major complications and fewer cases of electrode migration when compared with the classical

₹Introduction

posterior tympanotomy approach. These findings encourage the use of the transcanal route to cochleostomy as an alternative approach option (Lavinsky et al., 2012).

Despite the fact that the transmastoid facial recess approach continues to be the gold standard and most commonly utilized worldwide for cochlear implant (CI) surgery, other techniques have been developed and described in the literature. While many of them are employed when anatomical constraints require nontraditional approaches such as a small mastoid cavity, make the facial recess approach more difficult, others are used depending on the preference, comfort level, and specific training of the surgeon. While these alternative techniques are important additions to any otologist, it is paramount that CI surgery remain safe and effective while minimizing complications (Zeitler et al., 2010).

Aim of the Work

To review the literature regarding the different surgical techniques of cochlear implantation, highlighting the advantages and disadvantages of each technique.

Surgical Anatomy

Knowledge about the anatomy and physiology of the auditory system is a prerequisite for understanding not only the normal function of the auditory system, but also for understanding the fact that changes in function may result from surgical manipulations (Moller, 2011).

Mastoid air cell system

A portion of the mastoid process is pneumatized to form numerous mastoid air cells of inconstant size and number. Although anteriosuperiorly they are large, irregular, and air containing, the inferior-most cells are often rather small and may even contain marrow. The tympanic antrum is the large irregular air cavity lined by mucous membrane beginning at the aditus and extending posteriorly (Fig. 1) (Nayak, 2001). With cochlear implant surgery it is necessary to remove the cells from part of the mastoid bone to provide space for the receiverstimulator and lead wire assembly. Air cells must also be removed to expose the posterior wall of the middle ear for access to the round window and basal turn of the cochlea for the insertion of the electrode array through a posterior tympanotomy (Clark, 2003).