Recipient Outcomes in Adult Living Liver Transplantation

Thesis

Submitted for Partial Fulfillment of M.D. Degree of General Surgery

By

Amr Hamed Afifi Ali

(M.B.B.Ch - M.S.)

Faculty of Medicine - Ain Shams University

Under Supervision of

Prof. Dr. Refaat Refaat Kamel

Professor of General Surgery
Faculty of Medicine – Ain Shams University

Prof. Dr. Aser Mostafa EL Afifi

Professor of General Surgery
Faculty of Medicine – Ain Shams University

Prof. Dr. Wael Abdel Azeem Gomaa

Assistant Professor of General Surgery Faculty of Medicine – Ain Shams University

Dr. Hany Said Abdel Baset

Lecturer of General Surgery
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 2015

Acknowledgment

First of all, thanks to **Allah** for all the countless gifts I have been offered, for blessing me this work and for giving me a precious hand so as to be able to fulfill it.

I would like to express my deepest gratitude and profound appreciation to **Prof. Dr. Refaat Refaat Kamel**, Professor of General Surgery, Faculty of Medicine,
Ain Shams University, for his kind supervision and unlimited support throughout this work.

I cannot forget to express my deepest thanks to **Dr. Aser Mostafa El Afifi**, Professor of General Surgery, Faculty of Medicine, Ain Shams University, for his continuous encouragement, sincere help and endless cooperation.

My sincere gratitude is also extended to **Prof. DR. Wael Abdel Azeem**, Professor of General Surgery, Faculty of Medicine, Ain Shams University, for his guidance, patience and sincere advice.

Also, I am greatly grateful to **Dr. Hany Said Abdel Baset**, Assistant Professor of General Surgery,
Faculty of Medicine, Ain Shams University, for his great effort
throughout this work.

Tist of Contents

Page
Introduction
Aim of the work5
Review of literature:
 History of liver transplantation6
 Surgical technique of liver transplantation20
■ Immunosuppression in liver transplantation37
Liver transplantation for hepatocellular carcinoma
 Recipient outcomes for living donor liver transplantation
Patients and methods
Results
Discussion
Summary
References
Arabic summary

Tist of Abbreviations

	1	
6 MP	:	6- Mercaptopurine
AFP	:	Alpha fetoprotein
ALG	:	Anti Lymphocyte Globulin
AS	:	Anastomotic Stricture
AZA	:	Azathioprine
BCLC	:	Barcelona Clinic Liver Cancer Staging System
BMI	:	Body mass index
CIT	:	Cold ischemia time
CMV	:	Cytomegalovirus
CNIs	:	Calcineurin inhibitors
CT	:	Computed tomography
CTA	:	Computed tomography angioplasty
CYA	:	Cyclosporine
DDLT	:	Deceased-donor liver transplantation
DM	:	Diabetes mellitus
ELITA	:	European Liver and Intestine Transplant Association
ERCP	:	Endoscopic retrograde cholangiopancreatography
EVL	:	Everolimus
FKBP	:	FK binding protein
GRWR	:	Graft recipient weight ratio
HA	:	Hepatic artery
HAS	:	Hepatic artery stenosis

HAT	:	Hepatic artery thrombosis
HBV	:	Hepatitis B virus
НСС	:	Hepatocellular carcinoma
HCV	:	Hepatitis C virus
HLA	:	Human Leucocyte Antigen
HSV	:	Herps simplex virus
HTN	:	Hypertension
HVOB	:	Hepatic vein outflow block
IL 2	:	InterLeukin 2
ILTS	:	International Liver Transplant Society
INR	:	International Normalization Ratio
IVC	:	Inferior vena cava
LDLT	:	Living-donor liver transplantation
LFTs	:	Liver function tests
LT	:	Liver transplantation
MC	:	Milan Criteria
MELD	:	Model for End-stage Liver Disease
MHV	:	Middle hepatic vein
MMF	:	Mycophenolate mofetil
MPA	:	Mycophenolic acid
MPS	:	Mycophenolate sodium
MRA	:	Magnetic resonance angiography
MRCP	:	Magnetic resonance cholangiopancreatography
mTORi	:	Mammalian target of rapamycin inhibitor
NAS	:	Non Anastomotic Stricture

OLT	:	Orthotopic liver transplantation
PAI	:	Percutaneous Acetic acid injection
PEI	:	Percutaneous ethanol injection
PET	:	Positron emission tomography
PTA	:	Percutaneous Transluminal Angioplasty
PTC	:	Percutaneous Transluminal Cholangiography
PTLD	:	Post Transplant Lympho proliferative Disorder
PV	:	Portal vein
PVF	:	Portal vein Flow
PVP	:	Portal Vein Pressure
PVT	:	Portal vein thrombosis
RFA	:	Radiofrequency ablation
SAT	:	Systolic Ascending Time
SFSS	:	Small For Size Syndrome
SOD	:	Sphincter of Oddi Dysfunction
SRL	:	Sirolimus
TACE	:	Trans arterial chemoembolization
TARE	:	Trans arterial Radio embolization
TGF-B	:	Transforming Growth Factor B
UCSF	:	University of California San Francisco
UNOS	:	United Network for Organ Sharing
US	:	Ultrasound
WIT	:	Warm ischemia time

List of Figures

Figure	Title	Page
Figure 1	Clamping of the hilar structures followed by division at the hilum	26
Figure 2	Right lobe graft hilar anastomosis	27
Figure 3	Choledocho-jejunostomy bilio-enteric anastomosis in DDLT	36
Figure 4	The metro-ticket paradigm.	61
Figure 5	Digramatic algoristhm demonstrate Criteria Prior to placement on Waiting List Once Downstaged	68
Figure 6	Post-OLT biliary complications timeline. Although NAS and AS are usually most seen after 3 and 5 months after LT, they can be seen at any time period after OLT. LT, liver transplantation; SOD, sphincter of Oddi dysfunction; NAS, anastomotic stricture, AS, anastomotic stricture; Others, biliary stones, sludge, casts	74
Figure 7	Algorithm for the management of biliary complications. PTC, percutaneous cholangiography. The decision to pursue PTC versus ERCP is dependant on center expertise	77
Figure 8	Timeline for biliary stricture evolvement	78

Figure 9	MRCP revealing anastomotic stricture (AS). B ERCP revealing same biliary stricture. C ERCP with balloon dilation of AS. D ERCP with stent placement	81
Figure 10	A: Hepatic artery thrombosis after LDLT. fig a: ceoliac artery angiogram show occlusion of transplanted hepatic artery (arrow), b: post-thrombolysis angiogram demonstrate reconstitution of the hepatic artery (arrow)	94
Figure 11	Hepatic artery stenosis after LDLT, a: ceoliac artery angiogram showing hepatic artery stenosis (arrow). b: Ballon angioplasty for hepatic artery stenosis (arrow), c: post angioplasty ceoliac artery angiogram reveal good patency of hepatic artery (arrow).	96
Figure 12	Portal vein stenosis after LDLT. a: Hepatic portovenogram demonstrate portal vein stenosis (arrow). b: post-angioplasty portovenogram show satisfactory results (arrow).	97
Figure 13	Hepatic vein stenosis after LDLT. a: Hepatic venogram showing hepatic vein stenosis (arrow). b: post angioplasty hepatic venogram demonstrate good result (arrow)	98
Figure 14	IVC stenosis after deceased donor LT. a: IVC venogram shows stenosis at anastomosis (arrow). Fig 5b-c: Ballon angioplasty of IVC stenosis (arrow). d: postangioplasty IVC venogram demonstrate satisfactory results (arrow).	99

Figure 15	Biliary enteric anastomotic stricture after LDLT. a: Cholangiogram show biliary tract dilatation and tight stricture at biliary enteric anastomosis (arrow) with poor contrast opacification of the bowel loop. b: Ballon angioplasty of biliary enteric anastomotic stricture (arrow) c: Ballon angioplasty of biliary enteric anastomotic stricture (arrow). d: post angioplasty-cholangiogram demonstrate satisfactory result with free passage of contrast into small bowel loop	101
Figure 16	Donor and Recipient operation	114
Figure 17	Comparison between group A and group B as regard diagnosis (hepatopathy).	121
Figure 18	Comparison between both groups as regard intra operative data such as: operative time, cold ischemia time, hot ischemia time, intra operative blood loss and post operative ICU admission and hospital stay.	127
Figure 19	Comparison between both groups as regard biliary complications	128
Figure 20	Comparison between both groups as regard vascular complications	132
Figure 21	Comparison between both groups as regard HCC recurrence	137
Figure 22	Comparison between both groups as regard need for re-operations and its causes.	138

Figure 23	Comparison between both groups as regard post operative systemic complications	140
Figure 24	Kaplan meier curve for comparison between both groups as regard survival.	143

Tist of Tables

Table	Title	Page
Table 1	History of liver transplantation	7,8
Table 2	Child-Pugh classification	70
Table 3	Risk factors for biliary complications	73
Table 4	Classification of biliary stricture	79
Table 5	Non anastomotic stricture classification	80
Table 6	Common causes of bile leak	83
Table 7	Comparison between group A and group B as regard demographic data.	119
Table 8	Shows no statistically significant difference between groups as regard co-morbidities.	120
Table 9	Comparison between group A and group B as regard hepatopathy	120
Table 10	Comparison between group A and group B as regard HCC and bridging therapy	122
Table 11	Comparison between group A and group B as regard AFP	123
Table 12	Comparison between group A and group B as regard GRWR.	124
Table 13	Comparison between group A and group B as regard monitoring of intraoperative data and ICU admission +Hospital stay	126

Table 14	Comparison between group A and group B as regard biliary complications.	127
Table 15	Comparison between group A and group B as regard biliary complications.	130
Table 16	Comparison between group A and group B as regard biliary leak.	130
Table 17	Comparison between group A and group B as regard biloma.	131
Table 18	Comparison between group A and group B as regard vascular complications.	131
Table 19	Comparison between group A and group B as regard hepatic artery thrombosis.	134
Table 20	Comparison between group A and group B as regard hepatic artery stenosis.	135
Table 21	Comparison between group A and group B as regard PV thrombosis.	135
Table 22	Comparison between group A and group B as regard HV complications.	136
Table 23	Comparison between group A and group B as regard recurrence of malignancy.	136
Table 24	Comparison between group A and group B as regard the need for re-operation.	138
Table 25	Comparison between group A and group B as regard systemic complications.	139

Table 26	Comparison between group A and group B as regard incsional hernia.	141
Table 27	Comparison between group A and group B as regard infection.	141
Table 28	Comparison between group A and group B as regard re-transplantation.	142
Table 29	Comparison between both groups as regard survival.	142

INTRODUCTION

The liver is an important organ which performs complex functions including metabolism, synthesis and detoxification. Chronic liver disease is a multi factorial process leading to instability and derangement of essential functions. If not rapidly reversed, complications will lead to hepatic coma. With additional organ failure, recovery becomes irreversible and leads to a high patient mortality (*Guba et al.*, 2010).

Liver transplantation is an accepted management for end stage liver disease, early-stage hepatocellular carcinoma, and acute liver failure. The number of patients with end stage liver disease is growing rapidly. Living Donor Liver Transplantation (LDLT) has become an important alternative to cadaveric organ transplant for patients with end stage liver disease. LDLT has a good safety profile for donors with the median morbidity of 16% and the mortality of 0.2%. With the advantages over deceased donation such as shorter cold ischemia time, prescheduled procedure, and healthier liver grafts, LDLT may produce better recipient outcomes. Understanding donor and recipient outcomes is important. In addition, this information will help the transplant team improve their post operative management and plan for long-term follow-up after liver donation (*Lee et al.*, 2009).

As surgical techniques and postoperative managements continue to advance, the outcomes of LDLT have continued to improve. Patients considering LDLT should know whether the risk, severity of complications and long-term survival (*Eguchi et al.*, 2008).

Mortality from donation of the right lobe (0.23-0.5%) is potentially higher than that of left lobe donation (0.05-0.21%) and this is likely due to the extent of resection. Right lobe donation also has a greater incidence of complications (*Freise et al.*, 2008).

Bile leaks, biliary stricture and bilomas accounted for the majority of biliary tract complications. Postoperative biliary complications is commonly referred to as the "Achilles heel" of liver transplantation. Although recent advances in surgical procedures and graft preservation techniques have improved outcomes for biliary reconstruction of liver transplantation, biliary complications continue to be a major cause of morbidity among liver transplant recipients and are as high as 10% -60% (*Hampe et al.*, 2006).

Vascular complications are another common cause of morbidity of liver transplantation, especially hepatic artery problems. The literature reports the hepatic artery complication rate to be approximately 5%–16%. Due to the smaller vessel diameter, the insufficient length for reconstruction and the