

In Vitro Differentiation of Human Mesenchymal Stem Cells to Epithelial Lineage

Thesis

Submitted For Partial Fulfillment of the doctrine Degree In Clinical and Chemical Pathology

By

Irene Ellia M. Bishai (M.B.B.Ch.)

Supervisors

Prof. Dr. Mervat Saad El Ansary

Professor of Clinical and Chemical Pathology Faculty of Medicine Cairo University

Dr. Noha M. Hosny Shaheen

Ass. Professor of Clinical and Chemical Pathology Faculty of Medicine
Cairo University

Dr. Reem Jan Farid

Ass. Professor of Clinical and Chemical Pathology Faculty of Medicine
Cairo University

Faculty of Medicine Cairo University 2012

Abstract

Mesenchymal stem cells (MSCs) are a group of cells present in bone-marrow stroma, cord blood, Wharton's jelly and the stroma of various organs with the capacity for mesoderm-like cell differentiation. The aim of the present work is to isolate mesenchymal stem cells (MSCs) from human umbilical cord; Wharton's jelly and to examine the differentiation potential of these (MSCs) toward the epithelial lineage. Human MSCs, derived from Wharton's jelly of umbilical cord (≈31cm) after a caesarian section in full term delivery of 10 cases, were localized and isolated. Then primary culture was done to enrich and enhance their proliferation. These MSCs were detected after an average of 21-30 days not only morphologically, as a uniform spindle fibroblast like cells, and reached 70%-80% confluence with a good cellular yield but also via their immunophenotypic analysis which showed positivity for CD29, CD90, CD105, CD166 and negativity for CD34. Later, their differentiation potential was determined by co-culture with conditioning medium that include bone morphogenetic protein-4 (BMP-4), ascorbic acid, and human epithelium growth factor in a complete medium. These sets of conditions resulted in the expression of keratinocyte markers, namely pancytokeratin (mean value 92%) and cytokeratin19 (mean value 74%) using immunohistochemistry. In conclusion, these findings may have a significant impact on studies of human epithelial differentiation, functional genomics, pharmacological testing, cell therapy and tissue engineering by helping to eliminate worrying ethical and technical issues.

Keywords:

Mesenchymal Stem Cells, Wharton's Jelly, immunophenotyping, immunohistochemistry, cytokeratin

Acknowledgment

I would like first of all to thank God, the most Merciful.

My deepest gratitude and endless appreciation to Prof. Dr. Mervet Saad El Ansary,

Professor of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, who

can never be given the credit she deserves for her patience, technical support and the

great effort she exerted. I was really honored by her supervision.

I am also grateful to Prof. Dr. Noha Hosny Shahin, Ass. Professor of Clinical and

Chemical Pathology, Faculty of Medicine, Cairo University, who was always available,

helpful, ready for my questions and for providing me with numerous helpful comments.

I also want to thank Prof Dr. Reem Jan Farid, Ass. Professor of Clinical and Chemical

Pathology, Faculty of Medicine, Cairo University for her assistance during the execution

of this study.

I'll never forget the reassurance and endless help that I received from my father **Prof.**

Dr. Ellia Mikhail Bishai, F. Director of Abbassia Fever Hospital. No words can express my

appreciation and sincere gratefulness to him.

My gratitude is extended to my friends and colleagues for being very supportive of this

endeavor. I dedicate this work to all my family especially my very dear husband, Peter

who supported me with great care and endless encouragement to finish this work in a

peaceful environment to pursue my career.

Irene Ellia

March 2012

Table of Contents

LIST OF FIGURES	III
LIST OF TABLES	V
NOMENCLATURE	VI
	_
INTRODUCTION	1
REVIEW OF LITERATURE	3
CHAPTER I: MESENCHYMAL STEM CELLS	3
Definition	3
History	4
Characteristics	5
Morphology	5
Tissue Distribution and Sources of hMSCs	6
Immune Phenotype of MSCs	11
Migration and Homing Potential of MSCs	13
Differentiation Capacity	15
Immunomodulatory Effects	17
Trophic Effect of MSCs	18
Mesenchymal Stem Cells from Wharton's Jelly	19
Perinatal Stem Cells versus Embryonic and Adult Stem Cells	19
Wharton's Jelly Definition	21
Characterization of Wharton's Jelly MSCs	23
Umbilical Cord-Derived Mesenchymal Stem Cells (UC-MSC) As a Universal Source	26
Regenerative Medicine Applications of MSCs	27
Practical Applications of MSCs	28
CHAPTER II: APPLICATIONS OF MSCs	30
Clinical Applications of MSCs in Tissue Regeneration and Disease Therapy	31
MSCs in Ischemic Heart Diseases	34
MSCs in Pancreatic Regeneration	36
MSCs in Neurological Disorders	37
MSCs in Hepatic Cirrhosis	38
MSCs in Limb Ischemia	38
MSCs in Graft-Versus-Host Disease	39
MSCs in Rheumatoid Arthritis	39
MSCs in Osteoarthritis (OA) and Other Bone/Cartilage Defects	40

MSCs in Cancer Treatment	41
MSCs in Skin Regeneration	41
Potential Barriers Preventing Routine MSC Transplantation	45
Indefinite Association Between Phenotypic Characteristics and Biological Functions	46
Lacking Clinical Data Supporting Long-Term Safety of MSCs	46
Multiple Mechanisms of MSC Transplant Actions In Vivo Should be Further Determined	47
Lack of Comparability of MSC Transplant Efficacy Among Clinical Trials	48
Conclusions and Further Perspectives	49
PATIENTS AND METHODS	51
Sampling and Specimens Collections	51
EQUIPMENTS AND SUPPLIES	
DIFFERENTIATION CULTURE OF MSCs FOR MESENCHYMAL LINEAGE	
REAGENTS	
Sample Collection	
MSCs Separation and Expansion	55
UC COLLECTION AND PROLIFERATION OF MSCs	57
FLOW CYTOMETRIC CHARACTERIZATION OF MSCs (IMMUNOPHENOTYPING)	
Induction of MSCs into Keratinocyte Differentiation	59
Imunohistochemistry of Cytokeratin19 and Pancytokeratin Antibodies	61
Principle of the Staining System	61
Procedure	61
Assessment of Cytokeratin19 and Pancytokeratin	61
RESULTS	62
ISOLATION AND EXPANSION OF UC (BLOOD/WHARTON'S JELLY) MSCS	62
CHARACTERIZATION OF MESENCHYMAL STEM CELLS	64
Plastic Adherence	64
Cell Morphology	64
Immunophenotyping	65
DIFFERENTIATION OF MSCs INTO EPITHELIAL CELL LINEAGE	68
DISCUSSION	71
SUMMARY	83
CONCLUSION	84
RECOMMENDATIONS	85
REFERENCES	87

List of Figures

FIGURE 1 - MSCs DIFFERENTIATION (GRASSEL ET AL, 2007)	3
FIGURE 2 -MESENCHYMAL STEM CELL MORPHOLOGY (CHILDREN'S HOSPITAL BOSTON, 2007)	6
FIGURE 3 – IMMUNOFLOURESCENCE FOR MSCs WITHDRAWN FROM ADIPOSE TISSUE (NARDI ET AL, 2006)	7
FIGURE 4 - MESENCHYMAL STEM CELLS, SHOWN BY ARROWS, DERIVED FROM UMBILICAL CORD BLOOD LEFT (CENTER FOR	
Equine Health Horse Report, 2011); umbilical cord tissue Wharton's Jelly, Right (Manassas, 2011) 9
FIGURE 5 – THE ABILITY OF MSCs FOR SELF-RENEWAL (CURVED ARROW) AND FOR DIFFERENTIATE TO MESODERM (STRAIG	GHT,
SOLID ARROWS), ECTODERM AND ENDODERM (DASHED ARROWS) AS IT IS CONTROVERSIAL IN VIVO (UCCELLI ET AL,	,
2008)	16
FIGURE 6 - IN VITRO DIFFERENTIATION OF HUMAN MESENCHYMAL STEM CELLS (HMSC). THE CULTURED HMSC COULD EI	NTER
DIFFERENT CELL LINEAGES SUCH AS OSTEOGENIC (2), CHONDROGENIC (3) AND ADIPOGENIC (4) LINEAGES.	
Undifferentiated control (1) (M Mouiseddine, et al, 2007).	17
FIGURE 7 -PLURIPOTENT STEM CELLS, (ABRAHAM, 2010)	20
FIGURE 8 - UMBILICAL CORD DURING DELIVERY (GRUBER, 2011)	22
Figure 9 - Umbilical cord connective tissue (Prentice, 2009)	23
FIGURE 10 - CHARACTERISTICS OF UC-MSCs. (A) CELL CULTURE (X40) FIBROBLAST-LIKE MORPHOLOGY. (B) SURFACE-M	ARKER
EXPRESSION ON UC-MSCs; NEGATIVE FOR CD14, CD45, CD34 AND HLA-DR, BUT POSITIVE FOR CD44, CD73	s, CD90
AND CD29. THE DOTTED LINE IS THE ISOTYPE CONTROL. (C) OIL RED O STAINING OF UC-MSCS AFTER THE INDUC	TION OF
ADIPOGENIC DIFFERENTIATION, ARROWS INDICATE LIPID ROPLETS (× 40). (D) ALKALINE PHOSPHATASE STAINING FO	OR UC-
MSCs Osteogenic differentiation (Liu et al, 2010).	24
FIGURE 11 - WJCs CHARACTERIZATION; CELLS ASSUMED A POLYMORPHIC, FIBROBROBLAST-LIKE MORPHOLOGY AT 10 DA	ιΥS
(LEFT PANEL), 15 DAYS OF CULTURE (CENTRAL PANEL) AND PRIOR TO REACH CONFLUENCE (RIGHT PANEL) (ANGELL	JCCI ET
AL, 2010)	26
FIGURE 12 - TRANSDIFFERENTIATION OF BONE-MARROW-DERIVED MESENCHYMAL STEM CELLS (MSCs) INTO THE MULTIF	PLE SKIN
COMPONENT CELLS. (HINDAWI, 2011)	43
FIGURE 13 – CLAMPING AND MEASURING COLLECTED UMBILICAL CORD	57
FIGURE 14 – UMBILICAL CORD IN LAMINAR FLOW (MARMOTTI ET AL, IN PRESS)	58
FIGURE 15 - UMBILICAL CORD LENGHT AND THEIR CELLULAR YIELD	64
FIGURE 16 - MSC FROM THE UMBILICAL CORD TISSUE DURING CELL CULTURE. CELL CULTURES 7 DAYS (TOP LEFT), 14 DAY	′s , 21
DAYS, 28 DAYS (BOTTOM RIGHT) AFTER UC FRAGMENTS REMOVAL, MAGNIFICATION 10X. CELLS SHOW A FIBROBL	_AST-
LIKE MORPHOLOGY	65
FIGURE 17 - MSCs are positive for CD166 top right and CD29 (SAMPLE#2) BOTTOM LEFT	66
FIGURE 18 - MSCs are positive for CD105 bottom left and negative for CD34 (Sample#1) top right	66

In Vitro Differentiation of HMSCs to Epithelial Lineage Prepared by: Irene Ellia Bishai Section: List of Figures

FIGURE 19 - MSCs are positive for CD90 (Sample#3)	67
TIONE 13 - NISCS ARE FOSITIVE FOR CDSO (SAMIFEE#S)	0,
FIGURE 20 – IMMUNOHISTOCHEMISTRY OF THE DIFFERENTIATED CELLS WITH CYTOKERATIN 19 (MEAN 74%)	69
FIGURE 21 - IMMUNOHISTOCHEMISTRY OF THE DIFFERENTIATED CELLS WITH PANCYTOKERATIN (MEAN 92%)	70
FIGURE 22 - PERCENTAGE POSTIVITY FOR CK 19 AND PANCYTOKERATIN FOR TESTSED SAMPLES	70

List of Tables

Table 1 - Differences between Cord blood and Cord tissue stem cells (Clinical Trials.gov, $2010)\&$ (Pa	PPA ET AL,
2009)	10
Table 2 – Cell markers of MSCs was classified by different types (Dominici et al, 2006)	12
Table 3 – The minimal requirements for MSCs suggested by ISCT (Dominici et al, 2006)	13
TABLE 4 - LIST OF SOME BONE MORPHOGENETIC PROTEINS (WIKEPEDIA THE FREE ENCYCLOPEDIA, 2012)	14
Table 5 - Status of clinical trials of MSCs (Yi-Ling Si et al, 2011)	32
Table 6 – Mean ± SD of the UC length and cellular yield for all samples	63
Table 7 - Mean $\%$ \pm SD of cell surface markers CD90, CD29, CD166, CD105, CD34 for 10 withdrawn s	SAMPLES 67
TABLE 8 - MEAN% ±SD OF CK19 AND PAN-CYTOKERATIN FOR 10 SAMPLES	69

Nomenclature

5-FU 5-fluorouracil

AGM Aorta-gonad-mesonephros

ALS Amyotrophic lateral sclerosis

ASCs Adult Stem Cells

BDNF Brain-derived neurotrophic factors

bFGF Basic fibroblast growth factor

BSC Biological Safety Cabinet

BM Bone Marrow

BMP Bone Morphogenetic Protein

CCR Chemokine /chemokine receptor

CFU-f Colony-forming unit-fibroblasts

CK Cytokeratin

CNS Central nervous system

COPD Chronic obstructive pulmonary disease

DPBS Dulbecco's Phosphate buffered saline

EGF Epidermal growth

ESCs Embryonic stem cells

FCS Fetal calf serum

FGF Fibroblast growth factor

G-CSF Granulocyte colony-stimulating factor

GVHD Graft versus host disease

H-CAM Homing-associated cell adhesion molecule

HLA Human leukocyte antigens

hMSCs Human mesenchymal stem cells

HMGB1 High-mobility group protein B1

HSCs Hematopoietic Stem Cells

I/R Ischemia/ Reperfusion

IFN-β Interferon beta

Prepared by: Irene Ellia Bishai

Section: Nomenclature

IGF-1 Insulin-like growth factor-1

IP Intraperitoneal

iPS Induced pluripotent stem cell

ISCT International Society for Cell Therapy

MDS Myelodysplastic syndromes.

MEM Modified Eagle's medium

MHC-I Major histocompatibility complex-I

MI Myocardial infarction

MS Multiple sclerosis

MSA Multiple system atrophy

MSCs Mesenchymal Stem Cells/ Multipotent Stem Cells

NGF Nerve growth factor

OA Osteoarthritis

PD Parkinson's disease SS Sjogren's syndrome

RA Rheumatoid arthritis

SCID Severe combined immune deficiency

SDF-1 Stromal cell-derived factor-1

SGCs Sweat gland cells

SLE Systemic lupus erythematosus

SSEA Stage-specific embryonic antigen

TGF-b Transforming growth factor-beta

TRAIL Tumor necrosis factor-related apoptosis-inducing ligand

UC Umbilical cord

UCB Umbilical cord blood

UCMSCs Umbilical cord Mesenchymal Stem Cells

VEGF Vascular endothelial growth

WJSCs Wharton's Jelly Stem Cells

Section: Introduction

Introduction

Mesenchymal stem cells have attracted the attention of most scientists and researches since the early nineties because of their multipotent capacity and their high differentiation potential. In other words, they are capable of generating, both in vitro and in vivo, numerous types of tissue cells including blood, bone (Bruder et al, 1997; Jaiswal et al, 1997), cartilage (Johnstone et al, 1998), fat (Dennis et al, 1999), muscle(Ferrari et al, 1998), skeleton (Young et al, 1998), kidney, heart (Chin et al, 2010), endothelium (Al-Khaldi et al, 2003; Xu et al, 2010), nerve (Choi et al, 2010), liver (Wang et al, 2009), skin (Wu et al, 2007) and pancreatic cells (Chao et al, 2008). Bone marrow has always been considered the major source of MSCs as embryonic cells were always associated with ethical and religious limitations. However, advanced research has proved the availability of other sources as adipose tissue removed during plastic surgery, umbilical cord blood and umbilical cord including different compartments such as the Wharton's jelly (Troyer et al, 2008), the perivascular regions (Sarugaser et al, 2005), the subendothelium and endothelium areas of UC vessel which are removed during delivery (Convas et al, 2003). The latter represents a very good source of MSCs for a number of reasons. First of all, the umbilical cord (Wharton's Jelly) represents no ethical or invasive procedure but rather it is a medical waste in the delivery room (Troyer et al, 2008). Second, it offers a highly sterile source of MSCs as the placenta represents a barrier form both bacterial and viral contamination. Third, it has much more cellular yield and better results when isolated and expanded than umbilical cord blood (UCB). Fourth, being devoid of HLAII surface markers and the presence of some cells devoid of HLAI (Marmotti et al, in press), this represents an immunosuppressive property (Fan C-G et al, 2011) which allows not only their autologous transplantation but also their allogenic one (Weiss et al, 2008) and still reduces the possibility of graft versus host disease (GVHD) or any immunological problem (Fan C-G et al, 2011). Last but not least, they enjoy faster rate of division, absence of tumorigenic transformation or cytogenetic abnormality (Capelli et al, 2011; Weiss et al, 2006). Therefore, the

Prepared by: Irene Ellia Bishai

Section: Introduction

umbilical cord represents a very reliable source of MSCs as it retains all the MSCs'charactaristics; plastic adherence, morphological appearance, cell surface markers and differentiation potential typical to other sources of MSCs but with added privileges as mentioned earlier.

This current study focuses on the use of such very attractive sources of MSCs, umbilical cord tissue mainly and umbilical cord blood. However it uses a very simple protocol that mainly focuses on mincing and grinding the umbilical cord as is without any additional manipulations as cord vessel dissection or enzymatic digestion (Marmotti et al, in press). Hence, it is based on isolating and expanding a sufficient number of multipotent MSCs and later culturing them in a selectively enriched medium containing the bone morphogenetic protein-4 and epithelium growth factor to enhance and direct their differentiation to epithelial cell lineage (Sasaki, et al, 2008) which is again tested for by a selective epithelial marker cytokeratin 19 (Wu et al, 2005; Păunescu et al, 2007). This work intends to identify the transdifferentiation potential of these cells which could later be of great use for not only degenerative but also regenerative medicine (Salem & Thiemermann, 2010).

Review of Literature

Chapter I: Mesenchymal Stem Cells

Definition

Mesenchymal stem cells (MSCs) are adult stem cells traditionally found in the bone marrow. However, mesenchymal stem cells can also be isolated from other tissues including cord blood, peripheral blood, fallopian tube, adipose tissue, amniotic fluid, fetal liver and lung. Multipotent stem cells, MSCs differentiate to form fat, cartilage, bone, tendons & ligaments, nerve, muscle, and skin as in Figure 1. (Nardi et al, 2006).

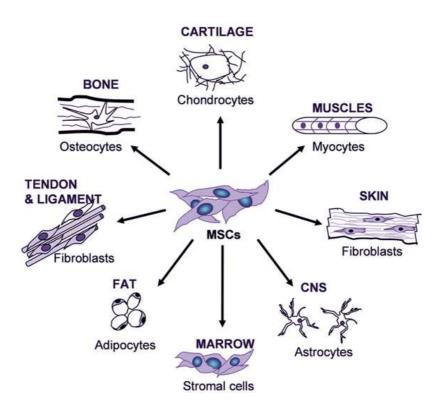


Figure 1 - MSCs Differentiation (Grassel et al, 2007)

While the terms Mesenchymal Stem Cell and Marrow Stromal Cell have been used interchangeably, neither term is sufficiently descriptive as discussed below:

- Mesenchyme is embryonic connective tissue that is derived from the mesoderm and that differentiates into hematopoietic and connective tissue, whereas MSCs do not differentiate into hematopoietic cells.
- Stromal cells are connective tissue cells that form the supportive structure in
 which the functional cells of the tissue reside. While this is an accurate
 description for one function of MSCs, the term fails to convey the relatively
 recently-discovered roles of MSCs in the repair of tissue.
- Because the cells, called MSCs by many labs today, can encompass multipotent
 cells derived from other non-marrow tissues, such as umbilical cord blood,
 adipose tissue, adult muscle or the dental pulp of deciduous baby teeth, yet do
 not have the capacity to reconstitute an entire organ, the term Multipotent
 Stromal Cell has been proposed as a better replacement (Wikipedia the free
 encyclopedia, 2011).

History

In 1924, Russian-born morphologist Alexander A. Maximow used extensive histological findings to identify a singular type of precursor cell within mesenchyme that develops into different types of blood cells (Becker et al, 1963). The clonal nature of marrow cells was first revealed in the 1960s (Siminovitch et al, 1963). An ex vivo assay for examining the clonogenic potential of multipotent marrow cells was later reported in the 1970s by Friedenstein and colleagues. In this assay system, stromal cells were referred to as colony-forming unit-fibroblasts (CFU-f) (Friedenstein et al, 1974).

Subsequent experimentation revealed the plasticity of marrow cells and how their fate could be determined by environmental cues. Culturing marrow stromal cells in the presence of osteogenic stimuli such as ascorbic acid, inorganic phosphate, and dexamethasone could promote their differentiation into osteoblasts. In contrast, the

addition of transforming growth factor-beta (TGF-b) could induce chondrogenic markers (Friedenstein et al, 1976)

As mentioned earlier, MSCs were originally described as early as the 1960's in animal experiments on embryos, but it was not until the 1980's that the concept of common MSCs in adult tissues was confirmed. Source and availability of MSCs have, however, taken some time to work out. While some MSCs can be found in many organs, those organs are not realistic targets for harvesting them without resulting organ damage. MSCs have also been sourced in bone marrow (1- 4 per 100,000 nucleated cells) or, in a smaller numbers, in the umbilical cord blood itself. They are also present, in much smaller concentrations in many adult human organs, and neonatally in fetal liver and amniotic fluid. Compared to these sources, however, MSCs can be found in more considerable numbers in Wharton's jelly, the matrix of the umbilical cord, and in the placental tissues. The added advantage of Wharton's Jelly is also that there is no risk in the harvesting procedure (Grossi et al, MSC from the Wharton's Jelly).

Characteristics

<u>Morphology</u>

Mesenchymal stem cells are characterized morphologically by a small cell body with a few cell processes that are long and thin, as shown in Figure 2. The cell body contains a large, round nucleus with a prominent nucleolus, which is surrounded by finely dispersed chromatin particles, giving the nucleus a clear appearance (Netter, 1987). The remainder of the cell body contains a small amount of Golgi apparatus, rough endoplasmic reticulum, mitochondria, and polyribosome. The cells, which are long and thin, are widely dispersed and the adjacent extracellular matrix is populated by a few reticular fibrils but is devoid of the other types of collagen fibrils (Brighton et al, 1991).