STUDIES ON ACCELERATION OF RAS CHEESE RIPENING USING PROTEOLYTIC ENZYMES

By

ADEL MAHMOUD MOHAMED KHOLIF

B.Sc. Agric. Sc. (Dairying), Al-Azhar University, 1999M. Sc. Agric. Sc.(Dairy Science and Technology)Ain Shams University, 2010

A thesis Submitted in Partial Fulfillment

Of

The Requirements for the Degree of

DOCTOR OF PHILOSPHY in

Agricultural Sciences (Dairy Science and Technology)

Department of Food Science Faculty of Agriculture Ain Shams University

2017

Approval Sheet

STUDIES ON ACCELERATION OF RAS CHEESE RIPENING USING PROTEOLYTIC ENZYMES

By

ADEL MAHMOUD MOHAMED KHOLIF

B.Sc. Agric. Sc. (Dairying), Al-Azhar University, 1999M. Sc. Agric. Sc. (Dairy Science and Technology)Ain Shams University, 2010

This thesis for Ph.D. Degree has been approved by:

Dr. Amin Gouda Mohammed Ibrahim Prof. Emeritus of Dairy Chemistry and Technology, Faculty of Agriculture, Suez Canal University Dr. Abd El-Hamed Abo El-Hassan Asker Prof. Emeritus of Dairy Chemistry and Technology, Faculty of Agriculture, Ain Shams University Dr. Mohamed Abd El-Razek El-Nawawy Prof. Emeritus of Dairy Microbiology, Faculty of Agriculture, Ain Shams University Dr. Gamal El-Din Ahmed Mahran Prof. Emeritus of Dairy Chemistry and Technology, Faculty of Agriculture, Ain Shams University

Adel. M. M. Kholif (2017), Ph.D. Fac. Agric., Ain Shams Univ.

Date of Examination: 3 / 7/2017

STUDIES ON ACCELERATION OF RAS CHEESE RIPENING USING PROTEOLYTIC ENZYMES

 $\mathbf{B}\mathbf{v}$

ADEL MAHMOUD MOHAMED KHOLIF

B.Sc. Agric. Sc. (Dairying), Al-Azhar University, 1999M. Sc. Agric. Sc. (Dairy Science and Technology)Ain Shams University, 2010

Under the supervision of:

Dr. Gamal El-Din Ahmed Mahran

Prof. Emeritus of Dairy Chemistry and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohamed Abd El-Razek El-Nawawy

Prof. Emeritus of Dairy Microbiology, Department of Food Science, Faculty of Agriculture, Ain Shams University

Dr. El-Said El-Emam El-Tanboly

Researcher Prof. Emeritus of Dairy Chemistry and Technology, Dairy Department, National Research Center

ABSTRACT

Adel Mahmoud Mohamed Kholif: Studies on Acceleration of Ras Cheese Ripening Using Proteolytic Enzymes. Unpublished Ph.D. Thesis, Department of Food Science, Faculty of Agriculture, Ain Shams University, 2017.

Milk clotting enzyme (MCE) from Fruit Seeds of *Solanum elaeagnifolium* plant, which has the capacity of forming milk curds was obtained by fractional precipitation with ammonium sulphate. The extracted enzyme was purified by using sequential chromatographic technique of the most active fraction on Sephadex G 200 to 4.21 folds with 4 % recovery.

Molecular weight of the enzyme was found to be 28 kDa, and its optimum temperature was 40 °C. The enzyme activity was stable at 40 to 60 °C with incubation times from 10-30 min. The enzyme showed the pH optima of 5.9, and quite stable in broad pH range of 4.0 to 6.5.

Effect of calcium chloride (CaCl₂) and sodium chloride (NaCl) at a concentration of 20 mM and 2 % gave the highest relative activity of the purified MCE about 1.31 and 1.10 fold, respectively. At a concentration of 10 mM and 1 % the enzyme gave the highest relative activity to proteolytic about 1.08 and 1.05 fold respectively.

The metal ions at 1 mM Zn²⁺, Ba²⁺, EDTA, Mg²⁺, Mn²⁺ were activators, whereas Fe²⁺, Mg³⁺, Ni²⁺ were inhibitors of the purified MCE. The Cu²⁺ at 1 mM was most effective stimulator, 5 mM Ba²⁺ was activator, whereas Zn²⁺, EDTA, Mg²⁺, Cu²⁺, Mn²⁺, Fe²⁺, Mg³⁺, Ni²⁺ at 5 mM were inhibitors. The Mg³⁺, Ni²⁺ at 5mM were the most inhibitors of the purified MCE and showed a typical hyperbolic velocity saturation curve with Km value of 0.0399 % with skim milk as a substrate.

Upon storage of the purified enzyme for 15 days at refrigerator temperature and room temperature, it retained 90.39 % and 75.34 % of MCA respectively.

Thus the obtained MCE was chosen to be used in a further study as enzyme for accelerating Ras cheese ripening made from buffalo's milk.

Three Ras cheese treatments were made from buffalo's milk. All cheese treatments made with traditional cheese starters (*Lactococcus lactis* spp *lactis* and *Lactococcus lactis* spp *cremoris*, 1:1). The first was a control cheese made with microbial rennet (Chy-Max. Chr Hansen, Hoersholm, Danmark). The other two treatments, T1 was made by using the veal rennet and T2 made by using the purified coagulant selected from the part I. All cheeses were stored at 12-14 °C for 120 days for ripening, and were examined periodically for some chemical, textural profile analysis. and organoleptical properties.

The obtained results indicated that Ras cheese T2 contained significantly lower (p <0.01) moisture than in the other cheese treatments, Also increased acidity ratio than in the other cheese treatments, and contained increased in soluble nitrogen (SN), non protein nitrogen (NPN), soluble tyrosine and soluble tryptophan ratio than in the other cheese treatments. Regarding the rate of accumulation of total volatile fatty acids (TVFA), it was increased with the increase of the ripening period in all Ras cheese treatments.

In all treatments, cheese acceptability increased during the first period (30 days) of ripening as well as at the other ripening periods (60, 90 and 120 days). However, the improvement was slow in T1, while it was more faster in T2. Cheese samples of T2 gained the highest score at 3 month of ripening, while the other treatments reached the same degree of ripening at 4 months.

It could be concluded that, good characterizes Ras cheese can be produced from heat treated buffalo's milk using the purified coagulant from *S. elaeagnifolium* fruit seeds with addition of traditional starter.

Key words: Milk clotting activity, proteolytic activity, fruit seeds plants, *Solanum elaeagnifolum*, calf rennet, microbial rennet, purification of milk clotting enzyme, Ras cheese, cheese ripening.

ACKNOWLEDGEMENT

First and foremost, all the praises and limitless thanks are to **ALLAH** who gave me the capability to do this work.

The author would like to express his gratitude to **Prof. Dr. Gamal El-Din Ahmed Mahran** Professor of Dairy Science and Technology, Department of Food Science, Faculty of Agriculture, Ain Shams University and **Prof. Dr. Mohamed Abd EL-Razek El-Nawawy** Professor of Dairy Microbiology of the same Department, for their close supervision, valuable advice during the course of this investigation as well as their fruitful help and guidance in writing the thesis.

I wish to express my deepest gratitude and sincere appreciation to Late **Prof. Dr. Azza Abd El Aziz Ismail** Professor of Dairy Science and Technology, **Prof. Dr. El-sayed El-Emam El-Tanboly** Professor of Dairy Science and Technology, Dairy Department, National Research Center (NRC), **Prof. Dr. Nabil Samy Abd-Rabou** Professor of Dairy Science and Technology, and **Prof Dr. Mohamed Abd-Elgalil Khorshid** Professor of Dairy Science and Technology of the same Department, NRC for their indispensable supervision, suggestion, solving the problems, valuable guidance and constructive criticism throughout this investigation.

Finally, the author would like to thank all members and colleagues at the Department of Food Science, Ain Shams University, and Dairy Department, NRC, for their continuous cooperation.

I

CONTENTS

	LIST OF TABLES	VI
	LIST OF FIGURES	VII
		I
	ABBREVIATIONS	XI
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	4
2.1.	General milk clotting enzyme view.	4
2.2.	Veal rennet	5
2.3.	Microorganism rennet	6
2.4.	Plant coagulants	9
2.5.	Solanum genus	11
2.6.	Milk clotting Enzyme properties	12
2.6.1.	рН	12
2.6.2.	Temperature	13
2.6.3.	Addition of calcium chloride	15
2.6.4.	Addition of sodium chloride	15
2.6.5.	Enzyme concentration	16
2.6.6.	Storage stability of milk clotting enzyme	16
2.7.	Milk clotting enzyme applications	16
2.7.1.	Acceleration of Ras cheese ripening	17
3.	MATERILS AND METHODS	22
3.1.	Materials	22
3.1.1	Plant coagulants	22
3.1.2	Microbial rennet	22
3.1.3	veal rennet	22
3.1.4.	Salt	22
3.1.5.	Calcium chloride	22
3.1.6.	Buffalo's milk	22

II

3.2.	Methods	23
3.2.1.	Enzyme extraction	23
3.2.2.	Extraction with 0.1 M sodium phosphate pH 5.9	23
3.2.3.	Proteolytic activity determination	23
3.2.4.	Determination of milk clotting activity	24
3.2.5	Determination of protein content	25
3.2.6	Buffers preparation	26
3.3.	Purification of milk clotting enzyme	26
3.3.1.	Precipitation by ammonium sulfate	26
3.3.2.	Ion Exchange Chromatography on Diethylaminoethyl-Sepharose (DEAE- Sepharose)	26
3.3.3	Gel Filtration by Using Sephadex G-100	27
3.3.4.	Gel Filtration by Using Sephadex G-200	27
3.3.5.	Electrophoresis using sodium dodecyl sulfate - polyacrylamide gel (SDS-PAGE)	27
3.3.6.	Buffers and gel preparation	27
3.3.7.	Electrophoresis conditions	28
3.3.8.	Molecular weight determination	29
3.4.	Characterization of milk clotting enzyme	29
3.4.1.	Optimum pH	29
3.4.2.	Optimum temperature	30
3.4.3.	Milk clotting thermal stability	30
3.4.4.	Effect of different inhibitors and activators on the purified extract	30
3.4.5.	Effect of calcium chloride on the purified milk clotting activity	30
3.4.6.	Effect of sodium chloride on the purified milk clotting activity	31
3.4.7.	Determination of Michaelis Constant (Km) and Maximum Velocity (Vmax) values	31
3.4.8.	Effect of enzyme concentration	31
3.4.9.	Effect of enzyme storage stability	31

III

3.5.	Cheese manufacture	31
3.5.1.	Chemical properties	32
3.5.1.1.	Moisture content	32
3.5.1.2.	Fat content.	33
3.5.1.3	Titratable acidity	33
3.5.1.4	Salts percentage	33
3.5.1.5	Total nitrogen	33
3.5.2.	Ripening indices of cheese	33
3.5.2.1	Soluble nitrogen	33
3.5.2.2.	Non protein nitrogen	33
3.5.2.3.	Tyrosine and Tryptophan	33
3.5.2.4	Total volatile fatty acid	34
3.6.	Biogenic amines determination	34
3.6.1.	Reagents	34
3.6.2.	Extraction	34
3.6.3.	Formation of dansylamines	35
3.6.4.	Apparatus	36
3.7.	Textural profile analysis.	36
3.8.	Sensory evaluation	37
3.9.	Statistical analysis	37
4.	RESULTS AND DISCUSSION	38
4.1.	PART I: ISOLATION, PURIFICATION AND	
	CHARACTERIZATION OF MILK CLOTTING ENZYME FROM FRUIT SEEDS OF Solanum	
	elaeagnifolium PLANT	38
4.1.1	Milk clotting Enzyme Isolation	39
4.1.1.1.	Activity of plant extracted enzyme under different	20
4112	buffering system A preliminary ammonium sulphate saturation	39
4.1.1.2.	fractionation on MCE and PA from S.	
	elaeagnifolium seeds	40
4.1.2.	Purification steps of milk clotting enzyme	46

IV

4.1.2.1.	Ion exchange chromatography on DEAE-Sepharose	46
4.1.2.2.	Gel filtration by using Sephadex G-100	47
4.1.2.3.	Gel filtration by using Sephadex G-200	48
4.1.2.4	Molecular mass determination of different MCE	
	preparations	49
4.1.3.	Properties of milk clotting enzyme	50
4.1.3.1.	Optimum pH	50
4.1.3.2.	Optimum temperature	51
4.1.3.3.	Thermal stability	52
4.1.3.4.	Effect of CaCl2 concentrations	53
4.1.3.5.	Effect of NaCl concentrations	54
4.1.3.6.	Effect of different inhibitors and activators on the	
	purified extract	55
4.1.3.7.	Effect of substrate concentration	56
4.1.3.8.	Effect of enzyme concentration	57
4.1.3.9.	Effect of storage temperature on MCA	58
4.1.3.10	Milk clotting activity and proteolytic activity of used coagulants	60
4.2.	PART II: ACCELERATION OF RAS CHEESE	
	MADE FROM BUFFALO'S MILK USING	
	DIFFERENT ENZYME COAGULANTS.	61
4.2.1.	Composition of buffalo's milk.	62
4.2.2.	Composition of fresh Ras cheese treatments made	
	from buffalo's milk.	62
4.2.3.	Changes in Ras cheese characteristics during	
	ripening.	63
4.2.3.1.	Moisture content	63

\mathbf{V}

4.2.3.2.	Values of pH	65
4.2.3.3.	Titratable acidity (TA %)	68
4.2.3.4.	NaCl concentration	70
4.2.3.5.	NaCl concentration / dry matter (DM)	70
4.2.3.6.	Total nitrogen (TN %)	72
4.2.3.7.	Total nitrogen /dry matter (TN / DM)	72
4.2.3.8.	Ripening indices of cheese	74
4.2.3.8.1.	Soluble nitrogen (SN %)	74
4.2.3.8.2.	Soluble nitrogen / total nitrogen (SN/TN)	74
4.2.3.8.3.	Soluble nitrogen / dry matter (SN/DM)	75
4.2.3.8.4.	Non protein nitrogen (NPN)	75
4.2.3.8.5.	Non protein nitrogen / total nitrogen (NPN/TN)	75
4.2.3.8.6.	Non protein nitrogen / dry matter (NPN / DM)	76
4.2.3.8.7.	Soluble tyrosine (mg/100g cheese)	79
4.2.3.8.8.	Soluble tryptophan (mg/100g)	79
4.2.3.8.9.	Total volatile fatty acids content (TVFA)	81
4.2.3.9.	Biogenic amines	83
4.2.3.10.	Textural profile analysis	91
4.2.3.11.	Sensory evaluation	97
5.	SUMMARY AND CONCLUSION	102
6.	REFERENCES	108
7.	ARABIC SUMMARY	119

VI

LIST OF TABLES

No		page
1	The universal taxonomy of <i>Solanum elaeagnifolium</i> plant.	38
2	Activity of plant extracted enzyme under different buffering system	42
3	A preliminary ammonium sulphate fractionation of milk clotting enzyme from <i>S. elaeagnifolium</i> seeds fruit	43
4	A preliminary ammonium sulphate fractionation of milk clotting enzyme (proteolytic activity) from <i>S. elaeagnifolium</i> seeds fruit	44
5	Purification steps of milk clotting enzyme from <i>S. elaeagnifolium</i> fruit seeds using ammonium sulfate and gel filtration (DEAE-Sepharose, Sephadex G-100 and	
	Sephadex G-200)	45
6	Milk clotting activity and proteolytic activity of microbial rennet, veal rennet, plant extracted.	60
7	Composition of buffalo's milk.	62
8	Composition of fresh Ras cheeses made from buffalo's milk and different coagulants	63
9	Moisture percentage of Ras cheese manufactured with different coagulants during ripening	65
10	pH value of Ras cheese manufactured with different coagulants during ripening.	67
11	Titratable acidity percentage of Ras cheese treated with different coagulants during ripening.	69
12	NaCl percentage and Salts /DM of Ras cheese	
13	manufactured with different coagulants during ripening. Total nitrogen (TN) percentage and TN / DM of Ras chasse manufactured with different coagulants during	71
	cheese manufactured with different coagulants during ripening.	73

VII

14	Soluble nitrogen (SN) percentage, SN/TN and SN / DM	
	of Ras cheese manufactured with different coagulants	
	during ripening.	77
15	Non protein nitrogen (NPN) percentage, NPN/TN and	
	NPN/DM of Ras cheese manufactured with different	
	coagulants during ripening.	78
16	Soluble Tyrosine and Tryptophan contents of Ras cheese	
	manufactured with different coagulants during ripening.	80
17	Total volatile fatty acids (TVFA) contents of Ras cheese	
	manufactured with different coagulants during ripening.	82
18	Biogenic amines contents of Ras cheese manufactured	
	with different coagulants at 120 Days.	85
19	Textural properties of Ras cheese manufactured with	
	different coagulants during ripening.	94
20	Sensory evaluation of Ras cheese manufactured with	
-	different coagulants during ripening.	101

VIII

LIST OF FIGURES

No		Page
1	Standard curve of tyrosine	24
2	Standard curve of protein	25
3	Close up of <i>S. elaeagnifolium</i> berries and Flowering branch	39
4	Profile for the chromatography of milk clotting on a DEAE- Sepharose column (25 x 1.5 cm) previously equilibrated with 0.1 M phosphate buffer, pH 5.9 at	1.5
5	flow rate 0.6 ml min ⁻¹ and 5 ml fractions. Gel filtration of milk clotting activity on a Sephadex G-100 column (40 x 2.5 cm) the column was equilibrated with 0.1 M phosphate buffer, pH 5.9 at a	46
6	flow rate of 0.7 ml min ⁻¹ and 5 ml fractions Gel filtration of milk clotting activity on a Sephadex G-200 column (50 x 2.5 cm) the column was	48
7	equilibrated with 0.1 M phosphate buffer, pH 5.9 at a flow rate of 0.7 ml min ⁻¹ and 5 ml fractions. Electrophoretic pattern of different MCE preparations from sequential purification displayed on SDS-polyacrylamide gel electrophoresis. Lane 1: DEAE sepharose fraction. Lane 2: Sephadex G100 fraction.	49
	Lane 3: Sephadex G200 fraction. Lane M: Standard markers.	50
8	Effect of pH values on purified enzyme (MCA and PA) of <i>S. elaeagnifolium</i> fruit seeds.	51
9	Effect of temperatures on purified enzyme (MCA and PA) of <i>S. elaeagnifolium</i> fruit seeds	52
10	Thermal stability of the purified enzyme of <i>S. elaeagnifolium</i> fruit seeds	53
11	Effect of CaCl ₂ concentrations on the purified enzyme of <i>S. elaeagnifolium</i> fruit seeds	54
12	Effect of NaCl concentrations on the purified enzyme of <i>S. elaeagnifolium</i> fruit seeds	55

IX

13	Effect of different inhibitors and activators on the purified extract of <i>S. elaeagnifolium</i> fruit seeds	56
14	Determination of Km and V max for purified enzyme	30
	of S. elaeagnifolium fruit seeds.	57
15	Activity of purified enzyme of S. elaeagnifolium fruit	58
	seeds	50
16	Effect of storage temperature on purified milk clotting activity of <i>S. elaeagnifolium</i> fruit seeds.	59
17	Treptamine contents (µg/g) of Ras cheese treated with	
17	different coagulants at 120 Days.	86
18	B-phenyl ethyl amine contents (μg/g) of Ras cheese treated with different coagulants at 120 Days.	86
19	Putrescine contents (µg/g) of Ras cheese treated with	
1)	different coagulants at 120 Days.	87
20	Cadaverine contents (µg/g) of Ras cheese treated with	
	different coagulants at 120 Days.	87
21	Histamine contents (µg/g) of Ras cheese treated with	
	different coagulants at 120 Days.	88
22	Tyramine contents (µg/g) of Ras cheese treated with	
	different coagulants at 120 Days.	88
23	Spermidine contents (µg/g) of Ras cheese treated with	00
	different coagulants at 120 Days.	89
24	HPLC Chromatogram of 7 biogenic amines standards.	89
25	HPLC Chromatogram of biogenic amines in (C).	90
26	HPLC Chromatogram of biogenic amines in (T1).	90
27	HPLC Chromatogram of biogenic amines in (T2).	91
28	Hardness (N) of Ras cheese treated with different	
20	coagulants during ripening.	95
29	Cohesiveness (B/A area) of Ras cheese treated with	
	different coagulants during ripening.	95
30	Springiness (mm) of Ras cheese treated with	
	different coagulants during ripening.	96
31	Gumminess of Ras cheese treated with different	0.5
	coagulants during ripening.	96
32	Chewiness (N/m) of Ras cheese treated with different	0=
	coagulants during ripening.	97