CONTENTS

	Page
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	4
1. Description of <i>Thymus sp</i>	4
1.1 Etymology	4
1.2 Distribution of <i>Thymus sp</i>	5
1.3 Habitat	5
1.4. Composition	6
1.5. Medicinal Action and Uses	6
1.6. Cultivation	7
2. Ecological factors and their interaction between	8
genetic factors and their effect of the essential oils. 2.1. Chemical composition of some medicinal and aromatic plants	9
2.2. Essential oil composition of <i>Thymus vulgaris</i>	11
2.3. Biological activity of thyme oil	14
3. Biochemical Markers	16 16
variations4. Molecular markers.	21
4.1 Inter simple sequence repeat – Polymerase chain reaction (ISSR-PCR)	21
III. MATERIALS AND METHODS	24
1. Materials	24
2. Methods	24
2.1 Soil analysis	24
2.1. Physical analysis	24
2.1.1. Soil moisture content:	24
2.1.2 Sail Taytura:	25

CONTENTS (Cont.)

2.2.Chemical analysis	Page 25
2.2.1 Preparation of the extract	25
2.2.1.1 Soil reaction (pH)	26
2.2.1.2 Electrical conductivity (E.C.)	26
2.2.1.3 Chlorides Cl	26
2.2.1.4 Sulphates SO4	26
2.2.1.5 Bicarbonates HCO3	26
2.2.1.6. Sodium and potassium	27
2.2.1.7. Calcium and magnesium	27
2.2 Oil analysis	27
2.2.1 Recovery of essential oil	27
2.2.2 Identification of components	27
2.3.Biochemical analysis.	28
2.3.1 Protein electrophoresis	28
2.3.1.1 Protein extraction	28
2.3.1.2 Gels preparation	29
2.3.1.3 Gel running and staining	32
2.4 Molecular analysis	33
2.4.1 DNA Isolation and ISSR analysis	33
2.4.1.1 DNA Isolation	33
2.4.1.2 Inter Simple Sequence Repeat Polymerase	34
Chain Reaction	
2.4.1.3. Gel electrophoresis	36
IV. RESULTS AND DISCUSSION	37
1. Description of the <i>Thymus sp.</i>	37
2. Environmental conditions	38
2.1 Ecological settings	38
2.1.1 The climate	39
2.1.2 The Soil	42

CONTENTS (Cont.)

	Page
3. Gas chromatography mass spectrometry (GS/MS)	44
analysis	44
4. Biochemical analysis	47
4.1 SDS – PAGE electrophoresis	47
4.2 Molecular analysis	52
4.2.1 ISSR – PCR analysis	52
4.2.2 Cluster analysis of <i>Thymus species</i> based on	- .
ISSR	56
4.2.3 Overall combined class patterns based on SDS – PAGE total protein and ISSR analysis	59
V. SUMMARY	60
VI. REFERENCES	64
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	Habitat types and site of collection of the studied	
	two Thymus species	24
2	Main gel (15 %) was prepared by mixing	30
3	Composition of separating and stacking gels	31
4	Names, Sequence and GC% for the six ISSR	
	primers used in ISSR – PCR analysis	34
5	Meteorological data of Al-Sharkyia - Belbes,	
	average of 10 years from (1997 – 2006)	40
6	Meteorological data of Alminia - Maghagha,	
	average of 10 years from (1997 - 2006)	41
7	Meteorological data of Qena - Naga Hamady,	
	average of 10 years from (1997 - 2006)	41
8	Meteorological data of Sidi Barrani area	
	N.W.C.Z., average of 10 years from (1997 -	
	2006)	42
9	Some Physical properties of the studied soil	
1.0	samples.	43
10	Some chemical properties of the studied soil	42
1.1	samples.	43
11	The Volatile oil percentage of <i>Thymus spp.</i>	45
12	Chemical composition of the essential oils of	
	Thymus vulgaris and Thymus capitatus in	46
13	different habitats	46
13	species of thyme under different conditions	50
14	Genotype-specific markers for the two species of	30
17	thyme genotypes resulting from SDS-PAGE	
	protein under different conditions	51
15	Matrix of the genetic similarity estimates of	31
10		
	protein banding patterns among of two species of	
1.0	1 thyme under different conditions	51
16	Number and types of bands as well as the	
	percentage of the total polymorphism generated by	52

Table		Page
	protein fractions among two species of thyme	
	under different conditions	
17	Number of amplified fragments and specific	
	ISSR markers in the Thymus species using 6	
	primers	56
18	Number and types of the amplified DNA bands as	
	well as the percentage of the total polymorphism	
	generated by Six ISSR primers in the Thymus	
	species	56
19	Matrix of the genetic similarity estimates between	
	two species of <i>Thymus</i> under different conditions	
	based on ISSR	58
20	Matrix of the genetic similarity estimates	
	between two species of Thyme under different	
	localities based on protein and ISSR – PCR	58

LIST OF FIGURES

Figure		Page
1	Thyme flower, sprigs and full flowering	5
2	Thymus vulgaris from Belbes	37
3	Thymus vulgaris from Al-Minia	37
4	Thymus vulgaris from Qena	37
5	Thymus capitatus from N.C.W.Z	37
6	The different localities of the studied <i>Thymus sp</i>	38
7	Chromatogram of <i>Thymus</i> oil composition	47
8	SDS-PAGE of protein banding patterns of two	
	species of Thymus under different conditions	50
9	Dendrogram demonstrated relationship among of	
	two species of thyme under different conditions	51
10	ISSR polymorphism of DNA of two species of	
	Thymus	55
11	Dendrogram demonstrated relationship among two	
	species of <i>thyme</i> under different conditions	57
12	Demonstrated relationship among two species of	
	Thymus based on protein and ISSR-PCR under	
	different localities	58

MOLECULAR GENETIC VARIATIONS OF THYMUS VULGARIS AND THYMUS CAPITATUS GROWN UNDER DIFFERENT ENVIRONMENTAL CONDITIONS IN RELATION TO BIOACTIVE PRODUCTS

By

ESRAA ATYA EL-SHERBENY

B. Sc. Agric. (Genetic), Ain Shams University, 1998 Master in Environmental Sci., Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment of The Requirement for the Doctor of Philosophy In Environmental Science

Department of Agricultural Science Institute of Environmental Studies & Research Ain Shams University

APPROVAL SHEET

MOLECULAR GENETIC VARIATIONS OF THYMUS VULGARIS AND THYMUS CAPITATUS GROWN UNDER DIFFERENT ENVIRONMENTAL CONDITIONS IN RELATION TO BIOACTIVE PRODUCTS

By ESRAA ATYA EL-SHERBENY

B. Sc. Agric. (Genetic), Ain Shams University, 1998 Master in Environmental Sci., Ain Shams University, 2005

This Thesis Towards a Doctor of Philosophy Degree in Environmental Science Has Been Approved by:

Name	Signature
Prof. Dr. Magda I. Soliman	
Professor of Cytogenetics, Fa	iculty of Science, Mansoura University
Prof. Dr. Khaled A. Solima Professor of Genetics, Fa University.	n
Prof. Dr. Fareida M. El-Sai Professor of Genetics, Deser	
Prof. Dr. Samir A. Ibrahim Professor of Genetics, Ain S	***************************************

MOLECULAR GENETIC VARIATIONS OF THYMUS VULGARIS AND THYMUS CAPITATUS GROWN UNDER DIFFERENT ENVIRONMENTAL CONDITIONS IN RELATION TO BIOACTIVE PRODUCTS

By ESRAA ATYA EL-SHERBENY

B. Sc. Agric. (Genetic), Ain Shams University, 1998 Master in Environmental Sci., Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment of the Requirement for the Doctor of Philosophy In

Environmental Science

Department of Agricultural Science Institute of Environmental Studies & Research Ain Shams University

Under The Supervision of:

Prof. Dr. Samir A. Ibrahim

Professor of Genetics, Faculty of Agriculture, Ain Shams University.

Prof. Dr. Fareida M. El-Saied

Professor of Genetics, Desert Research Center.

Dr. Ashraf Bakry Abd Al-Razek

Assistant Professor of Genetics, Department of Genetics, Faculty of Agriculture, Ain Shams University.

الإختلافات الجزيئية الوراثية لنوعين من نبات الزعتر النامى تحت ظروف بيئية مختلفة وعلاقتها بالنشاط البيولوجي لنواتجه

رسالة مهدمة من الطالبة إسراء عطية الشربيني

بكالوريوس في العلوم الزراعية (وراثة) جامعة عين شمس 1998 ماجستير في العلوم البيئية (قسم العلوم الزراعية) جامعة عين شمس 2004

لاستكمال متطلبات الحصول على درجة دكتوراه فلسفة في المعلوم البيئية

قسم العلوم الزراعية معهد الدراسات والبحوث البيئية جامعة عين شمس

2010

صفحة الموافقة على الرسالة الاختلافات الجزيئية الوراثية لنوعين من نبات الزعتر النامى تحت ظروف بيئية مختلفة وعلاقتها بالنشاط البيولوجي لنواتجه

رسالة مقدمة من الطالبة إسراء عملية الشربيني

بكالوريوس فى العلوم الزراعية (وراثة) جامعة عين شمس 1998 ماجستير فى العلوم البيئية (قسم العلوم الزراعية) جامعة عين شمس 2004

لاستكمال متطلبات الحصول على درجة دكتوراه فلسفة في العلوم البيئية قسم العلوم الزراعية

ا عليها:	وقد تمت مناقشة الرسالة والموافقة
	اللجنة:
	أد/ماجدة ابراهيم سليمان
جامعة المنصورة	أستاذ الوراثة والخلية لـ كلية العلوم ـ
	أد / خالد عبد العزيز سليمان
ة عين شمس	أستاذ الوراثة - كلية الزراعة - جامع
•••••	أ.د/ فريدة محمد السعيد
سيتولوجي - مركز بحوث الصحراء	أستاذ الوراثة ورئيس وحدة الوراثة وال
	أ.د/ سمير عبد العزيز إبراهيم
مر بن شر میں	أستاذ المداثة - كابة النبياعة - حاممة

الاختلافات الجزيئية الوراثية لنوعين من نبات الزعتر النامى تحت ظروف بيئية مختلفة وعلاقتها بالنشاط البيولوجي لنواتجه

رسالة مقدمة من الطالبة إسراء عملية الشربيني

بكالوريوس في العلوم الزراعية (وراثة) جامعة عين شمس 1998 ماجستير في العلوم البيئية (قسم العلوم الزراعية) جامعة عين شمس 2004

لاستكمال متطلبات الحصول على درجة دكتوراه فلسفة في العلوم البيئية قسم العلوم الزراعية

تحت إشراف:

أ.د/ سمير عبد العزيز إبراهيم

أستاذ الوراثة الميكروبية ورئيس مركز الهندسة الوراثية - كلية الزراعة - جامعة عين شمس

أ. د/ فريدة محمد السعيد

أستاذ الوراثة ورئيس وحدة الوراثة والسيتولوجي - مركز بحوث الصحراء

د/ أشرف بكرى عبد الرازق

مدرس بقسم الوراثة - كلية الزراعة - جامعة عين شمس

ختم الإجازة

أجيزت الرسالة بتاريخ / /2010

موافقة الجامعة / /2010 موافقة مجلس المعهد / / 2010

ABSTRACT

Esraa Atya EL-Sherbeny, Molecular Genetic Variations of *Thymus vulgaris* and *Thymus capitatus* Grown Under Different Environmental Conditions in Relation to Bioactive Products. Unpublished Ph.D. of Science Thesis, Department of Agriculture, Environmental Research Institute, Ain Shams University, 2009.

Thymus vulgaris cultivars obtained from three locations and T. capitatus which grown naturally were used to study the chemical composition of the essential oils. The environmental conditions of the different locations were taken to consideration studied and revealed that the collected Thymus nearly grown under different habitat conditions. The essential oils isolated were examined by a combination of Gas Chromatography / Mass Spectrometry GC/MS. The obtained data indicated that there are seventeen compounds were identified and there are clear differences between the locations in total oxygenated compounds. Protein banding patterns (SDS-PAGE) were using to identify the biochemical genetic fingerprint of each species. Meanwhile, a trial to identify the molecular genetic fingerprints based on ISSR of the studied species was carried out. In this respect, 6 primers were succeeded to amplify DNA and hence gave a fingerprint for each species. From the results of molecular markers it was possible to obtain some markers which are associated with of Thymus sp. under study which could be useful for distinguishing them from others

Keywords: *Thyme sp.*; *T. vulgaris*, *T. capitatus*, locality, chemical composition, essential oil, SDS – PAGE, ISSR fingerprint.

ACKNOWLEDGMENT

First and foremost, I feel always indebted to Allah, the most beneficent and merciful.

I would like to express my deepest thanks and sincere appreciation to **Prof. Dr. Samir A. Ibrahim**, Professor of Genetics, Faculty of Agriculture, Ain Shams University for his kind supervision, providing all needed facilities, solving the problems and continuous encouragement and energetic follow-up during the preparation of this thesis.

I am particularly grateful to **Prof. Dr. Fareida M. El-Saied**, Professor Genetics, Cytology and Genetic Unit, Department of Genetic Resources, Desert Research Center. I am greatly indebted for her help, constrictive criticism, continuous encouragement, providing all facilities and supplies to carry out this work and for her support and unlimited guidance during the progress of this study.

I would like to extend my deepest and sincere gratitude to Dr. Ashraf Bakry Abd Alrazek, Assistant Professor of Genetics, Faculty of Agriculture; Ain shams University for his supervision, constrictive criticism and valuable advice.

Special thanks to **Prof. Dr. Ahmed Abd-Elsalam** Professor of Pedology, Department of Pedology, Desert Research Center and also special thanks to **Prof. Dr. Ahmed Morsy** Professor of plant Eco-physiology, Department of Ecology and range management, Desert Research Center for their valuable advices and their encouragement.

I would like to express my deepest thanks to **Prof. Dr.**Magda I. Soliman Professor of Cytogenetics, Botany
Department, Faculty of Science, Mansoura University and **Prof.**Dr. Khaled Abd EL-Aziz Professor of Genetics, Faculty of
Agriculture, Ain Shams University for there kind support and
cooperation.

Acknowledgment is also extended to **Dr. Saber Hendawy**, Assistant Professor of, for his encouragement and continuous help me to make this work possible.

I also very grateful to **Dr. Ahmed Al – Hoseny**, Institute of Environmental Studies and Research, Ain Shams University for his support and unlimited assistances.

Lastly I would like to sincerely thank and gratitude to my beloved parents for encouragement and providing all the facilities throughout this work, special thanks to my sister (Rehab) for unlimited help me.

Finally, I dedicate this thesis for my kids (MALAK LASSER)

Esraa.A. EL-Sherbeny