

# Structural Studies on the Fluorescence Chemosensor of Some Azomethine Ligands with Different Metal Ions

#### **A Thesis**

Submitted for the degree of Master of Science to Chemistry

Department-Faculty of Science-Ain Shams University

### By

### Sally Gamal Sedeek Saleh

B.sc. in Major Chemistry, Faculty of Science

**Ain Shams University** 

(2008)

### Supervised by

Prof. Dr. Badr Awad EL-Sayed

Prof. Dr. Mohamed. M. Abo Aly

Prof. of Inorganic & Analytical Chemistry

Prof. of Inorganic chemistry

Chemistry Department, faculty of science

Chemistry Department, faculty of scince

AL-Azhar University

Ain Shams University

### Dr. Dina Yehia Sabry

Assis. Prof. of Analytical chemistry

Chemistry Department, Faculty of Science, Ain Shams University

Egypt (2015)

## **APPROVAL SHEET**

| Name of Candidate:                | Sally Gamal Sedeek Saleh                        |  |  |  |
|-----------------------------------|-------------------------------------------------|--|--|--|
| Degree:                           | M. Sc. In (Inorganic Chemistry)                 |  |  |  |
| Thesis Title: Strue               | ctural Studies on the Fluorescence Chemosensor  |  |  |  |
| of Son                            | ne Azomethine Ligands with Different Metal Ions |  |  |  |
| This Thesis has been approved by: |                                                 |  |  |  |
| 1- Prof. Dr. Mohan                | ned. M. Abo Aly                                 |  |  |  |
| 2- Prof. Dr. Badr A               | Awad EL-Sayed                                   |  |  |  |
| 3- Dr. Dina Yehia                 | Sabry                                           |  |  |  |
|                                   |                                                 |  |  |  |

# Approval Chairman of Chemistry Department Prof. Dr. Hamed Ahmed Younis

### **ACKNOWLEDGMENT**

First and foremost, thanks to Allah for giving me the opportunity and well-power to accomplish this work. I would like to express my thanks to **Prof. Dr. Badr Awad EL-Sayed** (Professor of Inorganic & Analytical Chemistry, Faculty of Science, and AL- Azhar University) and **Prof. Dr Mohamed Mahmoud Aboaly** (Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University) for suggesting the topic of this thesis, encouragement, assistance, valuable and continuous guidance, helpful comments, following up the progress of the research and the manuscript carefully. Also, I would like to thank **Dr. Dina Yehia Sabry,** Associate Professor of Analytical Chemistry, Faculty of Science, Ain Shams University, for her efforts and co-operation. Also I would like to thank **Dr. Mohamed said Attia,** Associate Professor of Inorganic & Photo analytical Chemistry, Faculty of Science, Ain Shams University, for suggesting and performing the part of the application of this work.

# **Aim of the Work**

The aim of the present work is synthesis and characterization of fluorescence Nano-optical sensors of some azomethine ligands with different metal ions in sol- gel. For accomplishing this work a novel, simple, sensitive and precise spectrofluorimetric method was suggested for measuring the activity of α-amylase enzyme in human saliva using palladium (II) complex with o-hydroxyacetophenon azine ligand as optical sensor. Also, we have used o-hydroxyacetophenone hydrazone in sol gel matrix as a nano-optical sensor for detection of zinc ions (II) in Human hairs of some volunteers (Females and Males) and this has been sensitive accomplished by simple, precise novel. and a spectrofluorimetric method.

# **CONTENTS**

| Chapt         | ter (1): Introduction                                                |     |  |
|---------------|----------------------------------------------------------------------|-----|--|
| 1.1           | General Background on Complexes of Transition Metals with            |     |  |
| 1.1           | Azomethine Ligands                                                   | 1   |  |
| 1.2           | Literature Survey on the Azomethines and their Metal Complexes and   | 5   |  |
| 1.2           | their Applications                                                   | 5   |  |
| 1.2           | Fluorescence chemosensor based on sensitive azomethine ligands and   | 1.5 |  |
| 1.3           | their transition metal Complexes                                     | 15  |  |
| Chapt         | ter (2): Experimental                                                | •   |  |
| 2.1           | Materials: chemicals and reagents                                    | 40  |  |
| 2.2           | Physical methods of measurements                                     | 41  |  |
| i)            | IR spectra                                                           | 41  |  |
| ii)           | Electronic spectra                                                   | 41  |  |
| iii)          | Fluorescence spectra                                                 | 41  |  |
| iv)           | Microanalytical analysis                                             | 42  |  |
| v)            | pH meter                                                             | 42  |  |
| vi)           | Transmission electronic microscope                                   | 42  |  |
| 2.3           | Synthesis of the azine (Ligand), hydrazone, Pd(II) azine complex and | 43  |  |
| 2.3           | their sol-gel matrices                                               |     |  |
| 2.3.1         | Synthesis of o-OH acetophenone azine as a Ligand                     | 43  |  |
| 2.3.2         | Synthesis of Pd (II) Complex of o-OHacetophenone azine               | 44  |  |
| 2.3.3         | Synthesis of palladium complex doped in sol-gel matrix               | 44  |  |
| 2.3.4         | Synthesis of o-OH acetophenone hydrazone as a ligand                 | 45  |  |
| 2.3.5         | Synthesis of o-OHacetophenone hydrazone doped in sol-gel matrix      | 45  |  |
| 2.4           | Analytical Procedures for Pd(II) azine complex and Hydrazone         | 46  |  |
| 2.4           | (Ligand)                                                             |     |  |
| 2.4.1         | Collection of Egyptian human saliva samples                          | 46  |  |
| <b>⊿.</b> 7.1 |                                                                      |     |  |

|        |                                                                                                                | Т     |
|--------|----------------------------------------------------------------------------------------------------------------|-------|
| 2.4.2  | Proposed method for determination of amylase activity as a blank                                               | 46    |
| 2.4.3  | Standard method of alpha amylase enzyme                                                                        | 47    |
| 2.4.4  | Preparation of human hair samples                                                                              | 48    |
| Chapt  | er (3): Results & Discussion                                                                                   |       |
| Part   | (1): Synthesis, spectroscopic characterization of Palladium (II)-o                                             | rtho  |
| hydrox | yacetophenone azine nano optical sensor doped in sol-gel matrix and its u                                      | se as |
| probe  | for assessment of $lpha$ -Amylase Activity in human saliva                                                     |       |
| 3.1    | Characterization of the APA and its PdAPA complex                                                              | 50    |
| 3.1.1  | Analysis of the IR spectra of APA and its palladium complex                                                    | 51    |
| 3.1.2  | The U.V/visible spectra and elemental analysis                                                                 | 54    |
| 3.1.3  | Emission and excitation spectra                                                                                | 55    |
| 3.1.4  | The Effect of pH on the fluorescence spectrum                                                                  | 56    |
| 3.1.5  | The Effect of solvents on the fluorescence spectrum                                                            | 56    |
| 3.1.6  | The Effect of foreign species                                                                                  | 57    |
| 3.2    | Photophysical properties of the Azomethine Ligand and its Pd(II) complex                                       | 58    |
| 3.2.1  | Analytical performance                                                                                         | 58    |
| 3.2.2  | Precision and Accuracy                                                                                         | 61    |
| 3.2.3  | Analytical applications                                                                                        | 64    |
|        | :Spectrofluorimetric detection of zinc in human hair by using xyAcetophenone hydrazone doped in sol-gel matrix | ; o-  |
| 3.3    | Characterization of the o-OH acetophenone hydrazone                                                            | 70    |
| 3.3.1  | Analysis of the FTIR spectra o-hydroxyacetophenone hydrazone                                                   | 71    |
| 3.3.2  | The U.V/visible spectra                                                                                        | 73    |
| 3.3.3  | Emission and excitation spectra                                                                                | 73    |
| 3.3.4  | Effect of pH on the fluorescence spectrum                                                                      | 74    |
| 3.3.5  | Effect of solvents on the fluorescence spectrum                                                                | 74    |
| 3.4    | Response of o-OHAcph Hz as chemosensor to zn <sup>2+</sup> ions                                                | 75    |
| 3.5    | Analytical performance                                                                                         | 77    |
|        |                                                                                                                |       |

| 3.5.1 | Analytical parameters of optical sensor method | 77 |
|-------|------------------------------------------------|----|
| 3.5.2 | Effect of foreign species                      | 79 |
| 3.6   | Analytical applications                        | 80 |
|       | Summary                                        | 81 |
|       | Conclusion                                     | 84 |
|       | References                                     | 86 |

# **List of Tables**

| 1   | Scope of Hydrohydrazination Route to Azomethine                             |    |
|-----|-----------------------------------------------------------------------------|----|
|     | Imines                                                                      | 2  |
| 2   | Classification of the organic compounds containing Azomethine               |    |
|     | group                                                                       | 4  |
| 3   | Selected bond lengths and angles [A°and θ] for the ligand                   |    |
|     | (HL)                                                                        | 14 |
| 4   | Selected bond lengths and angles [Ao and θ] for the complex                 |    |
|     | [CuL2]                                                                      | 14 |
| 5   | Synthesis of benzimidazole derivatives                                      | 25 |
|     |                                                                             |    |
| 6   | Recommendation for saliva sampling and storage, amylase measurement,        |    |
|     | and data analysis                                                           | 32 |
| 7   | FTIR spectra of the Ligand (APA) and its palladium complex                  |    |
|     | (PdAPA)                                                                     | 52 |
| 8   | Sensitivity and regression parameters for optical                           |    |
|     | sensor                                                                      | 60 |
| 9   | Evaluation of intra-day and inter-day accuracy and precisionin case samples |    |
|     | of Non-Smoker donor                                                         | 62 |
| 10  | Evaluation of intra-day and inter-day accuracy and precision in case        |    |
|     | samples of Smoker donor                                                     | 63 |
| 11  | Comparison between standard (A) and the proposed (B) methods by (average,   |    |
|     | RSD and average recovery) for non- smoker group                             | 66 |
| 12  | Comparison between standard (A) and the proposed (B) methods by             |    |
|     | (average, RSD and average recovery) for Smoker group                        | 67 |
| 13  | FTIR spectra of the ligand o-OHacetophenone hydrazone                       | 72 |
| 1.4 | Sensitivity and regression parameters for optical sensor                    | 78 |
| 14  | Sensitivity and regression parameters for optical sensor                    | 70 |
| 15  | Comparison of hair zinc levels of male and female groups                    | 80 |
|     |                                                                             |    |

# **List of Figures**

| 1  | Photoluminescence spectra of the dye and its metal chelates in DMF                                                                                                   | 18 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2  | Variation of fluorescence intensity of $LH_2$ against concentration of $Zn^{2+}$                                                                                     | 20 |
| 3  | Effect of the reaction time between enzyme and substrate on the luminescence intensity of synthesized CdS nano particle doped in solgel matrix                       | 30 |
| 4  | Current response of biosensor for α-amylase                                                                                                                          | 35 |
| 5  | Chronoamperometric response of biosensor for alpha-amylase                                                                                                           | 35 |
| 6  | Fluorescence excitation spectrum with emission at 340 nm of pure human saliva from a single volunteer                                                                | 37 |
| 7  | Fluorescence emission spectra with excitation at 282 nm obtained from skin sites following deposition of saliva and from control sites following deposition of water | 38 |
| 8  | Fluorescence emission spectra of the pure components of human saliva excited at 282 nm                                                                               | 39 |
| 9  | FTIR of the ligand (APA)                                                                                                                                             | 53 |
| 10 | FTIR of palladium complex PdAPA                                                                                                                                      | 53 |
| 11 | The UV/ Visible spectra of APA and its PdAPA complex                                                                                                                 | 55 |
| 12 | The emission spectrum of PdAPA (1×10 <sup>-3</sup> mol/L) at $\lambda_{ex}/\lambda_{em} = 410/450$ nm                                                                | 55 |
| 13 | The fluorescence spectra of 1x10 <sup>-3</sup> M of PdAPA in DMSO at different pHs                                                                                   | 56 |
| 14 | The fluorescence spectra of 1x10 <sup>-3</sup> M of PdAPA at different solvents.                                                                                     | 57 |
| 15 | Calibration curve of the luminescence intensity of PdAPA nano particle doped in sol-gel matrix versus 1/concentration of maltose                                     | 59 |
| 16 | Effect of the reaction time between enzyme and substrate on the luminescence intensity of synthesized PdAPA nano particle doped in sol-gel matrix                    | 68 |
| 17 | Correlation between the standard method and the proposed method for non- smoker.                                                                                     | 68 |
| 18 | Correlation between the standard method and the proposed method for smokers                                                                                          | 69 |
|    |                                                                                                                                                                      |    |