

Ain Shams University Faculty of Engineering Electric Power and Machines Department

Adaptive Protection Strategies for Distribution Systems with Distributed Generation

Ph.D. thesis By:

Eng. Adel Ahmed Fouad Aly Naiem

M.Sc. in electrical power engineering

A thesis submitted to the Faculty of Engineering, Ain Shams University in partial fulfillment of the requirements for the Ph.D. degree in Electrical Power and Machines Engineering

Supervised by:

Prof. Dr. Metwally A. El-Sharkawy

Electrical power & Machines Department Faculty of Engineering Ain Shams University

Prof. Dr. Almoataz Y. Abdelaziz

Electrical power & Machines Department Faculty of Engineering Ain Shams University

Prof. Dr. Yasser G. Hegazy

Electrical power & Machines Department Faculty of Engineering Ain Shams University

Cairo 2011

Acknowledgment

First of all, I wish to offer my great thanks to Allah and I hope that God would bless this research.

Although my next few words couldn't express my deep feelings and respect towards my supervisors, but it may at least indicates some of those feelings.

I would like to present my deep thanks to Professor Dr. **Metwally A. El-Sharkawy** for his excellent supervision, encouragement and endless support during the research period.

I also wish to acknowledge and present my sincere gratitude to Professor Dr. Almoataz Y. Abdelaziz for his continuous encouragement, helpful discussions, care and support.

I owe special thanks to Professor Dr. **Yasser G. Hegazy** for his continuous guidance, valuable comments, and fruitful criticism during the research period.

At last, but not at least, my sincere gratitude is presented to my family and particularly I would like to thank and appreciate my **father**, **mother**, **sister**, **my wife** and **my children** for support and patience.

Abstract

In this thesis, a new strategy is developed to deal with the recloser-fuse coordination problem without doing major changes in the working protection scheme. This problem arises from the integration of distributed generation in distribution systems. The main core of this strategy is based initially on an assessment process using a developed classifier. This classifier will classify the recloser-fuse coordination status at fault conditions to either *coordination holds* or *coordination lost*. Accordingly, the distribution system operator can take the proper decision. Then different actions are recommended as a solution to decrease the cases where coordination is lost and to partially solve the coordination problem.

The classification process is based on checking the operating sequence of all protection devices in the path from the faulted node to the substation node with the presence of distributed generation. Then this sequence is compared with a pre-required sequence obtained from the protection coordination philosophy. If a close match between the obtained sequence and the required sequence occurs, then coordination holds and no further action is required. Otherwise coordination is lost and a solution is required to avoid the consequences of miscoordination between protection devices.

To decrease the cases where coordination is lost, two actions are proposed. The first one is based on searching for the best location at which DG can be connected from the coordination problem point of view. The best DG location considered is that one with the highest number of cases classified as coordination holds. The second one is based on changing the fast mode recloser characteristics by changing the time dial parameter in the equation describing the recloser

characteristics. In case of the presence of multiple DGs in the system, another solution is also proposed and integrated with the previous two actions to enhance the protection coordination behavior. This solution is based on an offline study to prepare information about which DG that when disconnected the protection coordination can be re-attained.

The proposed strategy implies the following main tasks; load flow analysis, fault analysis, protection coordination setting, protection coordination assessment and protection coordination enhancement by applying the proposed solutions.

The main advantages of the proposed strategy is that, applying the classification process will discriminate between the cases where an action is required against the distributed generation penetration at fault conditions, and the cases where no need for an action is required. By this way, disciplinary actions like disconnection of distributed generation each time a fault takes place can be avoided, and consequently, the system reliability will be improved. On the other hand, applying the proposed solutions leads to reduce significantly the number of cases where coordination is lost and avoids doing major changes in the working protection scheme.

The proposed strategy is evaluated by being implemented to the IEEE 37-node test feeder and the IEEE 34-node test feeder; the obtained results are presented and discussed. All the required software is developed using MATLAB m-files as a platform.

Table of Contents

4.5 Transformer Model	36
4.6 Switch Model	37
4.7 Distributed Generator (DG) Model	37
4.7.1DG modeled as PV node in Load Flow analysis	38
4.7.2DG modeled as PV node in Short Circuit analysis	
4.8 Protection Devices Model	
4.8.1 Fuses	44
4.8.2 Reclosers	
4.8.3 Circuit breakers	45
Chapter (5)	46
Load Flow Analysis	46
5.1 General	
5.2 Load flow equations	
5.2.1 Power summation principle	46
5.2.2 Current summation principle	50
5.3 Load flow algorithms	52
5.3.1 Single phase load flow algorithm	52
5.3.2 Three phase load flow algorithm	55
5.4 Simulation results	57
5.4.128-bus system	57
5.4.2IEEE 37 node test feeder	62
Chapter (6)	
Fault Analysis	65
6.1 General	65
6.2 Fault analysis algorithm	65
6.3 Simulation results	72
Chapter (7)	77
Proposed Adaptive Protection Strategy	77
7.1 General	
7.2 Assumptions	
7.3 Outlines of the proposed strategy	
7.3.1 Protection Coordination Setting	
7.3.2 Protection Coordination Assessment	
7.3.3 Protection Coordination Improvement	81

7.4 Implementation of the proposed strategy on the	IEEE
37 node test feeder	84
7.4.1 IEEE 37 node test feeder with an over-current	
protection scheme	84
7.4.2 Protection coordination setting results	85
7.4.3 Protection coordination assessment results	87
7.4.4 Protection coordination improvement results	89
7.5 Implementation of the proposed strategy on the	IEEE
34 node test feeder	100
7.5.1 IEEE 34node test feeder with an over-current	
protection scheme	100
7.5.2 Protection coordination setting results	101
7.5.3 Protection coordination assessment results	103
7.5.4 Protection coordination improvement results	104
Chapter (8)	114
Conclusions and Future Work	
8.1 Conclusions	114
8.2 Future work	115
List of Publications	116
REFERENCES	117

List of Tables

Table Page
Table (2-1) Fault injection capabilities of different types of DG
Table (4-1) Load Models
Table (4-2) Constants for standard inverse relays
characteristics
Table (5-1) Line data of 28 bus system
Table (5-2) Load data of 28 bus system
Table (5-3) Arrangement of Busses for the 28 Bus-Distribution
System
Table (5-4) Load flow results for 28-bus system with DG
connected at different locations
Table (5-5) Branch Currents of the IEEE 37-node feeder
without DG64
Table (6-1) Branch fault Currents for phase (A) of the IEEE
37-node feeder without the presence of DG 73
Table (7-1) Fuse constant 'b'
Table (7-2) Number of cases (as a percentage) where
coordination holds while changing fault location
and DG penetration level90
Table (7-3) Number of cases (%) where coordination holds
while changing DG location and penetration level
93
Table (7-4) Number of cases (as a percentage) where
coordination holds for each location of the second
DG while the first DG is at node 1596
Table (7-5) The appropriate DG to be disconnected to re-attain
coordination98
Table (7-6) Number of cases where coordination holds for the
two DG scenario after disconnecting the
appropriate DG
** *

Table (7-7) Branch fault Currents for phase (A) of the IEEE
34-node feeder without the presence of DG 102
Table (7-8) Fuse constant 'b' for the IEEE 34-node test feeder
103
Table (7-9) Number of cases (as a percentage) where
coordination holds while changing fault location
and DG penetration level105
Table (7-10) Number of cases (%) where coordination holds
for each DG location with different values of the
TD parameter108
Table (7-11) Number of cases (as a percentage) where
coordination holds for each location of the second
DG while the first DG is at node 6110
Table (7-12) The appropriate DG to be disconnected to re-
attain coordination112
Table (7-13) Number of cases where coordination holds for the
two DG scenario after disconnecting the
appropriate DG 113

List of Figures

Figure	Page
Figure (1-1) Part of an actua	al distribution system with DG
penetration	5
	s lost between recloser and fuses 6
Figure (1-3) Coordination h	olds between recloser and fuses 7
Figure (2-1) Typical Protect	tion Devices Arrangement11
. , , ,	nation of Circuit Breaker, Recloser,
	neration Types14
	of Feeders
	stem divided into separated zones
	20
	istribution Line π Model
	of a distribution system line 47
Figure (5-2) Distribution fee	eders without laterals53
_	gram of a 30 bus DS with laterals 54
Figure (5-4) Flow chart for	arranging the buses in distribution
systems	54
Figure (5-5) Flow chart for	load flow algorithm based on
power summat	tion principle55
Figure (5-6) Flow chart for	load flow algorithm based on
current summa	ntion principle56
Figure (5-7) Single line diag	gram of a 28 bus distribution system
with 5 laterals	57
	of the 28 bus distribution system
when a DG is	at bus 5 compared to the case
without DG	61
Figure (5-9) Voltage profile	of the 28 bus distribution system
when a DG is	at bus 11 compared to the case
without DG	61

Figure (5-10) Voltage profile of the 28 bus distribution system
when a DG is at bus 16 compared to the case
without DG61
Figure (5-11) Modified IEEE 37 Node Test Feeder
Figure (5-12) Line Voltage (V _{ab}) for different cases of the
modified IEEE 37-node test feeder
Figure (6-1) Flow chart for fault analysis algorithm based on
the hybrid compensation method71
Figure (6-2) Voltage profile before fault inception
Figure (6-3) Voltage profile after a single line to ground fault
at bus 26 on phase (A) has occurred
Figure (6-4) Voltage profile after a line to line fault at bus 26
on phases (A and B) has occurred74
Figure (6-5) Voltage profile after a double line to ground fault
at bus 26 on phases (A and B) has occurred 75
Figure (6-6) Voltage profile after a three line to ground fault at
bus 26 has occurred
Figure (6-7) Voltage profile after a double line to ground fault
at bus 13 phases (A and B) and a single line to
ground fault at bus 26 has occurred
Figure (6-8) Magnitude of fault currents for phase A for
different fault locations with and without the
presence of DG at node 15
Figure (7-1) Flow chart for selecting the best DG location 82
Figure (7-2) Flow chart for protection coordination
enhancement
Implemented Protection Devices84
Figure (7-4) Operating curves for the recloser and fuses F5, F4
and F186
Figure (7-5) Classification pattern for a fault at node 15 with
TD equals 0.5 for recloser fast operation 88
Figure (7-6) Classification pattern for a fault at node 8 with TD
equals 0.5 for recloser fast operation
equals the for recipier fast operation

Figure (7-7) Number of cases (percentage %) where
coordination holds for each DG location91
Figure (7-8) Classification pattern for a fault at node 15 with
TD equals 0.3 for recloser fast operation 92
Figure (7-9) Classification pattern for a fault at node 15 with
TD equals 0.1 for recloser fast operation 92
Figure (7-10) number of cases (%) where coordination holds
for each faulted node with different values of TD
parameter94
Figure (7-11) Classification pattern due to the presence of two
DGs in the system
Figure (7-12) Classification pattern after disconnecting one of
the two DGs in the system according to fault
location97
Figure (7-13) The number of cases where coordination holds
before and after disconnecting the appropriate
DG
Figure (7-14) Modified IEEE 34 Node Test Feeder with
Implemented Protection Devices
Figure (7-15) Classification pattern for a DG at node 6 with TD
equals 0.5 for recloser fast operation
Figure (7-16) Classification pattern for a DG at node 28 with
TD equals 0.5 for recloser fast operation 104
Figure (7-17) Number of cases (percentage %) where
coordination holds for each DG location 106
Figure (7-18) Classification pattern for a DG at node 6 with TD
equals 0.3 for recloser fast operation
Figure (7-19) Classification pattern for a DG at node 6 with TD
equals 0.1 for recloser fast operation
Figure (7-20) number of cases (%) where coordination holds
for each DG location with different values of TD
parameter
Figure (7-21) Classification pattern due to the presence of two
DGs in the system

Figure (7.22) Classification nottern after disconnecting one of	٠£
Figure (7-22) Classification pattern after disconnecting one of)1
the two DGs in the system according to fault	
location1	111
Figure (7-23) The number of cases where coordination holds	j
before and after disconnecting the appropriate	
DG 1	113

Chapter one Introduction

Chapter (1) Introduction

1.1 General

Distribution systems are usually designed using a radial structure where a single source of power, such as a substation transformer, is supplying a network of downstream feeders. The simplicity of operation and the cost effectiveness of the protection scheme for radial distribution systems are considered to be the main advantages for the radial structure. This is due to the fact that in radial systems, power flow is in one direction and hence the protection devices need only to sense current magnitude without the need to detect current direction [1].

According to the sharp and continuous increase for electrical energy demand, always electric power systems need to be upgraded by further adding new large central generation plants. However the decisions for installing such central plants are so complicated, due to the continuous rise in gas prices, the difficulty in finding suitable sites for new generation and transmission facilities and also due to environmental constrains.

As a solution to this situation, the interest is now directed to distributed generation (DG), where DG are small energy sources connected close to load centers in distribution systems. This solution provides many benefits to the customers, utilities and the environment, but on the other hand it has negative impacts especially on the distribution system's protection scheme, due to the fact that the integration of DG in distribution systems will deteriorate the radial nature of these systems.

<u>Chapter one</u> <u>Introduction</u>

Accordingly, the main target in this thesis is to propose an adaptive protection strategy that keeps in hand the benefits from integrating DG into distribution systems while reducing its negative impacts on the protection scheme as much as possible.

1.2 Thesis Objectives and Thesis Contribution

1.2.1 Thesis Objectives

The main concern in this thesis is directed to study the recloser-fuse miscoordination problem that arises due to the penetration of distributed generation in radial distribution systems. The following objectives will be in mind during the work in this research:

- 1. Introduce the problem and present a comprehensive literature survey about the available solutions.
- 2. Propose an adaptive protection strategy to minimize the impact of DG penetration on the recloser-fuse coordination problem.
- 3. Implement the proposed strategy on an actual distribution system then present and discuss the results obtained.
- 4. Develop all the required software using MATLAB m-files as a platform.
- 5. Summarize the obtained results and conclusions and then offer some ideas for a future work.

1.2.2 Thesis Contribution

The main contribution considered in this thesis is the development of a new adaptive protection strategy to deal with the recloser-fuse miscoordination problem that appear from the integration of distributed generation in distribution systems. This strategy is based mainly on two phases.