Current Status of the Implication of the Clinical Practice Pattern in Hemodialysis Prescription in Regular Hemodialysis Patients in Egypt (Qalyubia)

THESIS

Submitted For Partial Fulfillment of Master Degree In
Internal Medicine

Presented by

Mohamed Abo Attab Nasr M.B.B.CH Zagazig University

Under Supervision of

Prof. Dr. Mohamed El-Tayeb Nasser

Professor of Internal Medicine& nephrology
Faculty of Medicine
Ain Shams University

Dr. Waleed Anwar Abd El Mohsen

Assistant professor of Internal Medicine& nephrology Faculty of Medicine Ain Shams University

Faculty of Medicine
Ain Shams University
2014

Acknowledgement

First and foremost thanks to ALLAH who granted me the power to accomplish this work.

I would like to express my deep gratitude and appreciation to **Prof. Dr.**Mohamed El-Tayeb Nasser Professor of Internal Medicine Inephrology

, Faculty of Medicine, Ain Shams University, for his kind supervision and support. Without his continuous guidance and encouragement, this thesis would have never seen light.

I am sincerely grateful to **Dr.Waleed Anwar Abd El Mohsen**Assistant professor of Internal Medicine Length nephrology Faculty of Medicine
Ain Shams University. Every step and every detail in this work have been kindly assisted and supported by his effort and care.

Last but not the least; I would like to thank my family, my wife and my friends for supporting me spiritually throughout this journey.

Contents

List of figures, tables and abbreviations	II
Introduction	1
Aim of the work	2
Review of literature Hemodialysis prescription	
Hemodialysis-associated comorbidities	18
Guidelines for kidney diseases	24
Hemodialysis in Egypt	30
Patients and methods	32
Statistical analysis	36
Results	38
Discussion	78
Summary and conclusion	86
Recommendations	90
References	91
Arabic summary	

List of figures

Figure (1): Hemodialysis in progress	4
Figure (2): Hemodialysis machine	4
Figure (3): Dialyzer	8
Figure (4): A radiocephalic fistula	16
Figure (5): Age distribution in the study population	38
Figure (6): Gender distribution in the study population	39
Figure (7): Different causes of CKD in the study population	40
Figure (8): Hypertension in the study population	41
Figure (9): Frequency of diabetes mellitus in the study population	42
Figure (10): Frequency of ischemic heart disease presence in the s	tudy
population	43
Figure (11): Chronic liver disease in the study population	44
Figure (12): Chronic obstructive pulmoanry disease in the study	
population	45
Figure (13): Chronic arthropathy in the study population	46
Figure (14): Frequency of PVD presence in the study population	47
Figure (15): Work status in the study population	48
Figure (16): Dependency and wheel chair status in the study	
population	49
Figure (17): Frequency of dialysis in the study population	50
Figure (18): Duration of dialysis in the study population	51
Figure (19): Sponsoring status in the study population	52
Figure (20): Type of vascular access in the study population	53
Figure (21): Frequency of failed access in the study population	54

Figure (22): The levels of hemoglobin during the study	55
Figure (23): History of blood transfusion in the study population	56
Figure (24): Different types of ESA used by the study population	57
Figure (25): History of iron injection in the study population	58
Figure (26): History of vitamin B complex use in the study	
population	59
Figure (27): History of L-carnitine use in the study population-	60
Figure (28): History of vitamin D use in the study population	61
Figure (29): The serum levels of calcium during the study	62
Figure (30): The levels of phosphate during the study	63
Figure (31): Calcium category in the study population	64
Figure (32): Phosphorus level in the study population	65
Figure (33): The levels of Ca x PO ₄ product during the study	66
Figure (34): Different types of phosphorus binders used by the stu	dy
population	67
Figure (35): Hypotension during HD session in the study population	on 68
Figure (36): Cramps during HD session in the study population	69
Figure (37): Bony aches during HD session in the study population	n 70
Figure (38): Itching during HD session in the study population	71
Figure (39): Hepatitis C virus	72
Figure (40): Hepatitis B virus	73
Figure (41): Types of dialyzers used in the study population	74
Figure (42): Sterilization of dialyzers used in the study population	75
Figure (43): Dialzyer surface area distribution in the study	
population	76
Figure (44): Criteria of dialysate used in study population	77

List of tables

$\boldsymbol{Table\ (1):}\ Data\ collection\ sheet\ for\ hemodialysis\ prescription\ in\ Egypt$
study
Table (2): Age distribution in the study population
Table (3): Gender distribution in the study population
Table (4): Different causes of CKD in the study population
Table (5): Hypertension in the study population
Table (6): Diabetes mellitus in the study population
Table (7): Ischemic heart disease in the study population
Table (8): Chronic liver disease in the study population
Table (9): Chronic obstructive pulmoanry disease in the study
population
Table (10): Chronic arthropathy in the study population
Table (11): PVD in the study population
Table (12): Work status in the study population
Table (13): Dependency and wheel chair status in the study
population
Table (14): Dialysis in the study population
Table (15): Duration of dialysis in the study population
Table (16): Sponsoring status in the study population
Table (17): Type of vascular access in the study population
Table (18): Failed access in the study population
Table (19): The levels of hemoglobin during the study
Table (20): History of blood transfusion in the study population
Table (21): Different types of ESA used by study population

Table (22): History of iron injection in the study population	58
Table (23): History of vitamin B complex use in the study	
population	59
Table (24): History of L-carnitine use in the study population	60
Table (25): History of vitamin D use in the study population	61
Table (26): The serum levels of calcium during the study	62
Table (27): The levels of phosphate during the study	63
Table (28): Calcium category in the study population	64
Table (29): Phosphorus category in the study population	65
Table (30): The levels of Ca x PO ₄ product during the study	66
Table (31): Different types of phosphorus binders used by the study	,
population	67
Table (32): Hypotension during HD session in the study population	68
Table (33): Cramps during HD session in the study population	69
Table (34): Bony aches during HD session in the study population	70
Table (35): Itching during HD session in the study population	71
Table (36): Hepatitis C virus	72
Table (37): Hepatitis B virus	73
Table (38): Isolation of hepatitis B virus patients and hepatitis C virus	us
patients in study population	73
Table (39): Types of dialyzers used in the study population	74
Table (40): Sterilization of dialyzers used in the study population	75
Table (41): Dialzyer surface area distribution in the study population	n 76
Table (42): Criteria of dialysate used in study population	77

List of abbreviations

AV : Arteriovenous

CAPD : Continuous Ambulatory Peritoneal Dialysis

CHOIR : Correction of Hemoglobin and Outcomes in

Renal insufficiency

CKD : Chronic Kidney Disease

CMB : Calcium Mass Balance

CVD : Cardiovascular Disease

D Ca : Dialysate Calcium concentration

DOPPS : Dialysis Outcomes and Practice Patterns Study

DOQi : Dialysis Outcome Quality initiative

eKt/V : Equilibrated Kt/V

ERA/EDTA : European Renal Association-European Dialysis

and Transplantation Association

ESAs : Erythropoietin Stimulating Agents

FDA : Food and Drug Administration

FGF : Fibroblast Growth Factor

GraDe : Grades of recommendation assessment,

Development, and evaluation

HD : Hemodialysis

HDF : Hemodiafiltration

iCa : Ionized calcium

IHDF : Intermittent on-line Hemodiafiltration

IL : Interleukin

iPTH : Intact Parathyroid Hormone

LVH : Left Ventricular Hypertrophy

MBD : Mineral and Bone Disorder

MIA : Malnutrition-Inflammation Atherosclerosis

MPO : Membrane Permeabilities Outcomes

nPCR : Normalized Protein Catabolic Rate

PEM : Protein-Energy Malnutrition

PTH : Parathyroid Hormone

stKt/V : Standard Kt/V

SRI : Solute Removal Index

 $\beta_2 m$: beta-2-microglobulin

K/DOGI : Kidney Disease Outcome Quality Intiative.

ADPKD : Autosomal Dominant Polycystic Kidney Disease

SLE : Systemic Lupus Erythromatosis

GN : Glomerulonephritis

PVD : Peripheral Vascular Disease

TNF : Tumour Necrosis Factor

CARI : Australian and Newzland Society Of Nephrology

NKF : National Kidney Foundation

BMI : Body Mass Index

stKt/V : Standard Kt/V

SRI : Solute Removal Index

Introduction

Hemodialysis (HD) is the routine renal replacement therapy for more than 300,000 patients in the United States who have reached end-stage renal disease. The goals of HD are straightforward and include resotring the body's intracellular and extracellular fluid environment and accomplishing solute balance by either removal from the blood into the dialysate or from the dialysate into the blood. Optimal care of the patient receiving long-term HD requires appropriate prescirption according to patient- and device-dependent variables (*Ikizler and Schulman*, 2005).

Patients who have ESRD and are on HD are characterized by an exceptionally high mortality rate compared with the general population (Ajiro, 2007).

The state of health of individuals with kidney failure who are initiated on dialysis, and therefore their earlier care, is a major determinant of survival and wellbeing on maintenance dialysis, and that persons with kidney disease are more likely to die from cardiovascular disease than to reach dialysis; hence, the urgency to focus on early detection and treatment in all high-risk populations (*Locatelli*, 2008).

Aim of the work

The aim of this work is to Study the pattern of current clinical practice in hemodialysis prescription in regular hemodialysis patients in Egypt and compare this pattern with standard international guidelines in hemodialysis prescription (*K/DIGO*, 2010), stressing on anemia, bone disease management and adequacy of dialysis.

State the current status of dialysis patient in Egypt (questionnaire).

Hemodialysis prescription

Hemodialysis (HD) is the routine renal replacement therapy for more than 300,000 patients in the United States who have reached end-stage renal disease. The goals of HD are straightforward and include resotring the body's intracellular and extracellular fluid environment and accomplishing solute balance by either removal from the blood into the dialysate or from the dialysate into the blood. Optimal care of the patient receiving long-term HD requires appropriate prescirption according to patient- and device-dependent variables (*Ikizler and Schulman.*, 2005).

Hemodialysis can be an outpatient or inpatient therapy. Routine hemodialysis is conducted in a dialysis outpatient facility, either a purpose built room in a hospital or a dedicated, stand alone clinic. Less frequently hemodialysis is done at home. Dialysis treatments in a clinic are initiated and managed by specialized staff made up of nurses and technicians; dialysis treatments at home can be self initiated and managed or done jointly with the assistance of a trained helper who is usually a family member (*Abel et al.*, 2013).

A dialysis machine pumps small amounts of blood out of the body and through a filter called an artificial kidney or dialyzer. This kidney filters extra fluid and wastes from the blood. The blood is then pumped back into body (Abel et al., 2013).

The dialyzer, or filter, has two parts; one part for blood and the other part for a washing fluid called dialysate. A thin membrane separates these two sides. Blood cells, protein and other important things remain in blood because they are too big to pass through the membrane. Smaller waste products such as urea, creatinine and extra fluid pass through the

membrane and are removed. Changes in the dialysate or cleansing fluid can be made for special needs (Abel et al., 2013).

Figure (1): Hemodialysis in progress (Abel et al., 2013).

Figure (2): Hemodialysis machine (Abel et al., 2013).