

Biological synthesis of gold nanoparticles using extracts of some medicinal plants

A Thesis

"Submitted for the degree of Master of Science as a partial fulfilment for requirements of the master of Science"

By Amal Samir Abdel-Rahman Khidr (B.Sc. Biochemistry/Chemistry, 2008)

Supervisors

Dr. Mostafa M. H. Khalil

Professor of Chemistry Chemistry Department, Faculty of Science, Ain Shams University

Dr. Dina Y. Sabry

Lecturer of Chemistry Chemistry Department, Faculty of Science, Ain Shams University

Biological synthesis of gold nanoparticles using extracts of some medicinal plants

Thesis submitted by

Amal Samir Abdel-Rahman Khidr

For The Degree Of M.Sc Of Science In Inorganic Chemistry

To

Department of Chemistry
Faculty of Science
Ain Shams University
2013

Faculty of Science Chemistry Department

Approval sheet

Name of candidate: **Amal Samir Abdel-Rahman Khidr**Degree: M.Sc. Degree In Chemistry

Thesis Title: Biological synthesis of gold nanoparticles using extracts of some medicinal plants

This Thesis has been approved by:

1-Prof. Dr. Mostafa M. H. Khalil

2- Dr. Dina Y. Sabry

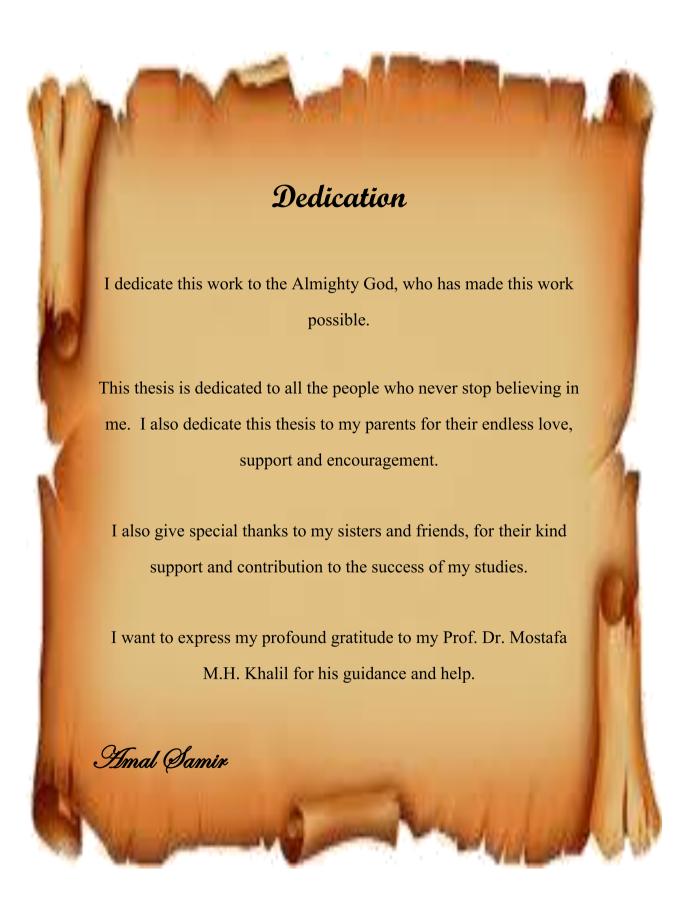
Approval

Chairman of Chemistry Department

Prof. Dr. Hamed Ahmed Younes Derbala

2013

Statement


This Thesis Is Submitted In Partial Fulfillment Of The M.Sc Degree, Faculty Of Science, Ain Shams University

In addition to the work carried out in this thesis the candidate, **Amal Samir Abdel-Rahman Khidr**, has attended postgraduate studies in the following topics and passed successfully in the final examination in the academic year 2009-2010:

621	Coordination Chemistry
622	Radiochemistry and Separation Techniques
623	Electrochemistry and Electrochemical Analysis
624	Group Theory and Computer Programming
625	Spectroscopic Methods for Structural and Analytical Chemistry
	TOEFL

Prof. Dr. Hesham A. Madian

Chairman of Chemistry Department Faculty of Science-Ain Shams University

First and foremost, I would like to thank God for given me the wisdom, knowledge and strength to complete this work successfully.

I would like to express my gratitude to my supervisor, Prof. Dr. Mostafa M. H. Khalil, Professor of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University, for giving me the opportunity to work in this field and for giving me the chance to be one of his students. I learned from his insight a lot. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my master study. He did not only guide this work and find time to discuss with me but also gave me the confidence to express my ideas freely. His leadership, support, attention to details, hard work have set an example I hope to match some day. Actually he was more than a supervisor, he was a teacher who inspired me and pushed me forward.

Many thanks to **Dr. Dina Sabry**, Assistant Professor of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University, for her help, supervising and support in the thesis.

I would also like to thank my Colleagues in the Chemistry Department, Faculty of Science, Ain Shams University for their help.

CONTENTS

	Page
Acknowledgement	i
List of Table	iii
List of Schemes	iv
List of Figures	V
List of Abbreviation	XV
Abstract	xvii
Chapter I: Introduction	
1.1 What is nanotechnology?	1
1.2 Classification of nanoparticles	3
1.3 Metallic nanoparticles	4
1.4 Origin of surface plasmon resonance in noble metal nanoparticles	5
1.5 General synthetic routes of metallic nanoparticles	10
1.6 Methods for synthesize of metallic nanoparticles	11
1.6.1 Physical methods	14
1.6.2 Chemical methods	15
1.6.3 Biological Methods	20
1.6.3.1 Synthesis of gold nanoparticles using plant extracts 1.7 Mechanisms of biosynthesis of gold Nanoparticles using	21
plant extract	27
1.8 Antioxidant compounds in Salvia Officinalis L leaves and	_,
Foeniculum Vulgare seeds	38
Aim of the work	43
Chapter II: Materials and Methods	
2.1 Material	44
2.2 Analytical instruments	44
2.2.1 UV–visible spectral analysis	44
2.2.2 Transmission electron microscopy (TEM)	44
2.2.3 X-Ray diffraction	45
2.2.4 Fourier transform infrared spectroscopy	45
2.2.5 Thermogravimetric analysis	45
2.2.6 Antimicrobial activity assay	46
2.3 Sample preparation	47
2.3.1 Preparation of sage extract	47
2.3.2 Preparation of fennel extract	47

2.4 One-step synthesis of gold nanoparticles using extract	48
2.5 Synthesis of AuNPs	48
2.5.1 Using different sage extracts concentrations	48
2.5.2 Using different fennel extracts concentrations	50
2.5.3 Using different pH of sage extract	51
2.5.4 Using different pH of fennel extract	52
2.6. Samples preparation for antimicrobial assay	52
2.6.1 Using sage extract	52
2.6.2 Using fennel extract	53
Chapter III: Synthesis of gold nanoparticles using Salvia Of leaves	ficinalis
3.1 Effect of extract concentration	55
3.2. Effect of contact time	67
3.3. Effect of pH on nanoparticles synthesis	69
3.4. Effect of reaction temperature on AuNPs synthesis	74
3.5. The X-Ray diffraction study	75
3.6. Fourier transform infrared spectroscopy (FTIR)	77
3.7. Thermal gravimetric analysis	80
3.8. Antimicrobial Activity	81
Chapter IV: Synthesis of gold nanoparticles using Foenicula vulgare seeds	um
4.1 Effect of extract concentration	89
4.2. Effect of contact time	95
4.3. Effect of pH on nanoparticles synthesis	96
4.4. Effect of reaction temperature on AuNPs synthesis	102
4.5. The X-Ray Diffraction Study	104
4.6. Fourier transform infra-red spectroscopy (FTIR)	105
4.7. Thermal gravimetric analysis	110
4.8. Antimicrobial Activity	111
Conclusion	115
Summary	117
References	123
Arabic summary	١

List Of Tables

Table		Page
Table (1.1)	Some common objects in nanometers	2
Table (1.2)	Synthesis of gold nanoparticles by plant	23-27
	extracts	
Table (1.3)	Major phenolic compounds (% of total)	41
	identified in fennel methanolic extract by	
	HPLC.	
Table (2.1)	calculations of final concentration of sage	49
	extract (variable) and HAuCl ₄ (constant)	
Table (2.2)	calculations of final concentration of sage	50
	extract (constant) and HAuCl ₄ (variable)	
Table (2.3)	calculations of final concentration of fennel	51
	extract (variable) and HAuCl ₄ (constant)	
Table (2.4)	Detailed preparation of the sage extract	52
	and synthesized AuNPs samples used for	
	antimicrobial assay	
Table (2.5)	Detailed preparation of the fennel extract	54
	and synthesized AuNPs samples used for	
	antimicrobial assay	
Table (4.1)	Comparison between two plants used for	115
	synthesis of gold nanoparticles	

List Of Schemes

Scheme		Page
Scheme	Scheme for AuNP synthesis using the	17
(1.1)	Turkevich method.	
Scheme	Scheme for gold nanoparticle synthesis by	18
(1.2)	BSM.	
Scheme	Scheme showing the synthetic steps	18
(1.3)	involved in the Brust synthesis of gold	
	nanoparticles.	
Scheme	Formation of gold nanoparticles through	30
(1.4)	using electron transfer reaction	
Scheme	Ascorbic acid reduction mechanism of gold	32
(1.5)	and silver ions to obtain Ag ⁰ and Au ⁰ NPs	
Scheme	Au ³⁺ reduction mechanism by flavanoids,	34
(1.6)	myricetin and gallic acid in R. damascena	
	extract	
Scheme (3.1)	Chemical structure of sage phytochemicals	78

List Of Figures

Figure		Page
Fig. (1.1)	Origin of surface plasmon resonance due to	6
	coherent interaction of the electrons in the	
	conduction band with electromagnetic field	
Fig. (1.2)	Gold nanoparticles absorption of various	8
	sizes and shapes.	
Fig. (1.3)	Schematic diagram of gold nanoparticle	10
	growth.	
Fig. (1.4)	Schematic diagram of methods of gold	13
	nanoparticle synthesis.	
Fig. (1.5)	Schematic diagram of various chemical	20
	reducing and stabilizing agents that used for	
	gold nanoparticle synthesis.	
Fig. (1.6)	Various types of plants used for the	22
	synthesis of metal nanoparticles.	
Fig. (1.7)	Reducing and stabilizing agents in plant	28
	phytochemicals that used for the synthesis	
	of metal nanoparticles.	
Fig. (1.8)	NAD ⁺ and its reduced form (NADH)	31
Fig. (1.9)	Schematic diagram of the formation of	36
	phyllanthin stabilized gold nanoparticles	

Figure		Page
Fig.(1.10a)	Color of synthesized AuNPs after 15	37
	minutes incubation of 0.5mM chloroauric	
	acids with corresponding phytochemical	
	fractions, each 1mg.	
Fig.(1.10b)	UV-Visible spectrum of synthesized AuNPs	37
	after 15 minutes incubation of 0.5mM	
	chloroauric acids with corresponding	
	phytochemical fractions, each 1mg. Each	
	reaction mixture shows SPR band at 536	
	nm.	
Fig. (1.11)	Possible chemical constituents of plant	38
	extract responsible for the bioreduction of	
	metal ions	
Fig. (1.12)	Chemical structures of phenolic compounds	40
	and essential oils that present in Salvia	
	Officinalis leaf	
Fig. 1.13	Chemical structures of phenolic compounds	41
	that present in Foeniculum vulgare seeds	
Fig. (1.14)	Chemical structures of essential oils that	42
	present in Foeniculum vulgare seeds	
Fig. (3.1a)	Color changing that characteristic to	56
	nanogold formation as a function of sage	
	extract concentration	

Figure		Page
Fig. (3.1b)	UV-vis spectra of gold nanoparticles using	56
	constant HAuCl ₄ concentration (1.4x10 ⁻⁴ M)	
	$(5x10^{-3} \text{ w/v})$ with different concentration of	
	sage extract	
Fig. (3.2)	UV-vis spectra of gold nanoparticles	59
	formation using constant 1.4x10 ⁻⁴ M	
	HAuCl ₄ concentration and (a) low	
	concentration of sage extract (lower than	
	0.06 % w/v), (b) high concentration of sage	
	extract (above 0.06 % w/v) respectively	
Fig.(3.3)	UV-vis spectra of gold nanoparticles	60
	formation using sage extract (0.32% w/v)	
	and (1.4x10 ⁻⁴ M) (5x10 ⁻³ w/v) HAuCl4 with	
	various 10 ⁻² M SDS concentration (1.0: 6.0	
	ml)	
Fig. (3.4)	Structure of sodium dodecyl sulphate (SDS).	62
Fig.(3.5)	TEM measurements of AuNPs synthesized	62
	through using 5x10 ⁻³ (w/v) HAuCl ₄ and 0.04	
	% (w/v) sage extract concentration	
Fig.(3.6)	TEM measurements of AuNPs synthesized	63
	through using 5x10 ⁻³ (w/v) HAuCl ₄ and 0.06	
	% (w/v) sage extract concentration	

Figure		Page
Fig.(3.7)	TEM measurements of AuNPs synthesized	63
	through using 5x10 ⁻³ (w/v) HAuCl ₄ and 0.32	
	% (w/v) sage extract concentration	
Fig.(3.8)	Schematic diagram illustrate gold	64
	nanoparticles synthesis through using	
	various concentrations of sage extract and	
	constant concentration of HAuCl ₄	
Fig.(3.9)	Schematic diagram illustrate mechanism of	65
	action of SDS.	
Fig.(3.10)	UV-vis spectra of gold nanoparticles	67
	formation using constant concentration of	
	sage extract (0.06 % (w/v)) and different	
	HAuCl4 concentration (1x10 ⁻³ % (w/v) –	
	8x10 ⁻³ % (w/v)) of HAuCl ₄ concentration	
	respectively.	
Fig.(3.11)	Effect of contact time on AuNPs formation	68
	(0.06% w/v sage extract and constant 5x10 ⁻³	
	% (w/v) HAuCl ₄).	
Fig.(3.12)	Relation between time and maximum	69
	absorbance at wavelengths 540 nm and 780 nm.	
Fig.(3.13)	UV-vis spectra of AuNPs formation using	71
	0.06% w/v sage extract and 1.4x10 ⁻⁴ M	
	HAuCl ₄ in acidic medium.	