DIFFERENT TYPES OF CONTINENT CATHETERIZABLE URINARY STOMAS ADVANTAGES AND DISADVANTAGES

Essay

Submitted For Partial Fulfillment of the Master Degree in Urology

By

WASEEM MOHAMMED MOUKHTAR

M.B. B.Ch,

Faculty of medicine - Mansoura University (2007)

Supervised By

Prof. Dr. HANY HAMED GAD

Assistant Professor of urology
Faculty of Medicine

Ain Shams University

Dr. AHMED REDWAN

Lecturer of Urology
Faculty Medicine
Ain Shams University

Faculty of Medicine

Ain Shams University

2014

First and foremost, I thank **God** for helping and guiding me in accomplishing this work.

I would like to express my sincere gratitude to **Prof. Dr. Hany Hamed Gad**, Professor of Urology, Faculty of Medicine - Ain
Shams University, firstly for giving me the honor to be his
student and for his great support and stimulating views.

I would like to thank **Dr. Ahmed Ibrahim Radwan**, Lecturer of Urology, Faculty of Medicine - Ain Shams University, For his active, persistent guidance and other whelming kindness have been of great help through this work.

Also I would like to thank my **Family** who stood behind me to finish this work and for their great support.

> Waseem Mohammed Moukhtar

LIST OF CONTENTS

	Title Page No
•	Introduction1
•	Aim of the work
•	Review of Literature
•	Surgical Anatomy and Surgical Principles4
•	Patient's Selection, Indications and Contraindications18
•	Types of continent cutaneous urinary reservoirs
•	Types of Continent cutaneous urinary outlet42
•	Continent cutaneous catheterizable stoma73
•	Evaluation of Continent Cutaneous Stoma79
•	Complications of continent catheterizable cutaneous urinary.
	diversion87
•	Summary and conclusion
•	References 120
	Arabic Summary

I

LIST OF ABBREVIATIONS

Abbrev.	Meaning
BMD	Bone Mineral Density
CIC	Clean intermittent catheterization
CT scan	Computed tomography scan
CUD	Continent Urinary diversion
HCO₃	Bicarbonate
К	Potassium
MACE	Malone Antegrade continent enema
Na	Sodium
OSP	oral sodium phosphate
SIU	Societe Internationale d'urologie
ТАР	Transverse ascending pouch
TDP	Transverse descending pouch
TSF	Tubular skin flap
UTI	Urinary tract infection
VQZ	V-quadrilateral Z plasty
WHO	World Health Organization

LIST OF FIGURES

Fig. No	. Title Pa	age No.
Figure (1):	Arteries to the small bowel	5
Figure (2):	Arterial supply to the small bowel and colon	8
Figure (3):	Positions of the appendix	11
Figure (4):	The blood supply to the appendix	12
Figure (5):	Glichrist procedure	25
Figure (6):	Mainz pouch I	26
Figure (7):	New technique of continent outlet for Mainz po	uch27
Figure (8):	Another new technique for continent outlet for pouch	
Figure (9):	Indiana Pouch	29
Figure (10): 1	Florida pouch	30
Figure (11):	Penn Pouch with in situ appendiceal outlet	31
Figure (12):	Penn pouch with separate appendiceal outlet	32
Figure (13):	Base of cecum taken with the appendix for el of continent outlet	•
Figure (14):	Kock pouch	34
Figure (15):	Hemi Kock pouch	35
Figure (16):	Double-T-pouch	37
Figure (17):	Gastric reservoir	38
Figure (18):	Transverse ascending colonic pouch	41
Figure (19):	Nipple valve mechanism	46
Figure (20):	Serous lined Extramural Valve	49
Figure (21):	Appendicovesicostomy	51
Figure (22):	Mitrofanoff principle	51
Figure (23):	Woodhouse tapered ileum	
Figure (24):	The classic Yang-Monti technique	63
Figure (25):	Spiral Monti technique	
Figure (26):	Continent vesicostomy	

List Of Contents 📚

LIST OF FIGURES (Cont...)

Fig. No.	Title	Page No.
Figure (27):	preparation of stoma site	75
Figure (28):	Creation of Nipple stoma.	76
Figure (29):	Y-V plasty for stomal reconstruction	76
Figure (30):	The V and Q flaps	77
Figure (31):	The Z plasty	78

LIST OF TABELS

Tabels (1):	The electro	olyte ab	normali	ities, j	prevent	ion	
	and treat	ment in	each ty	ype of	f reserv	oir	113

Introduction

Introduction

Catheterizable channels are essential in many patients to obtain urinary continence. The indication for a urinary catheterizable stoma is any difficulty in catheterizing the native urethra. The difficulty may be because of pain, tortuosity, or impossibility for the patient to reach the meatus (Suser et al., 1997).

Continent cutaneous urinary diversion is a well-accepted method of treatment for end-stage bladder disease in children. The concept adopted in the pediatric population consists of creating a reservoir (mostly from bowel) and an outlet channel to provide a catheterizable abdominal stoma. The appendix and the Yang-Monti channel are the most commonly used techniques. An ileal flap conduit adjacent to the reservoir and recently the use of skin flaps to create catheterizable channels has also been reported as alternatives (*Cervellione*, 2010).

The Mitrofanoff principle for creation of a continent catheterizable stoma using the appendix has been a main stay in the armamentarium of pediatric urologists and reconstructive surgeons since it was originally described in 1980. This principle involves the use of a small caliber tube implanted into a compliant bladder or reservoir with a non-refluxing anastomosis to provide convenient and effective method to empty the bladder (Mitrofanoff, 1980). Application of this technique have expanded to include the use of ureter, tapered ileum stomach, tubularized bladder flaps, and transverse tubularized bowel as originally described by Yang (1993) and Monti et al (1997) and later modified by Casale (1999).

Suitable appendiceal length is the rate-limiting factor in constructing a conduit to the umbilicus. By tubularizing the base of the transected cecum, enough length to connect the conduit from the base of the bladder to the umbilicus have consistently gained. Cecoappendicovesicostomy (CAV) was described as a safe