

Evaluation of TNF α and TGF β polymorphism in Egyptian patients with Chronic HCV

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Master Degree in Science (Biochemistry)

Submitted By

Sally Farouk Abdel-Aziz Abdel-Khalik

Bachelor in Science (2009)

Researcher Assistant–Microbial Biotechnology Department
National Research Center

Under supervision of

Prof. Dr. Ahmed M. Salem Prof. Dr. Mostafa K. ElAwady

Professor of Biochemistry Professor of Molecular Biology

Faculty of Science National Research Center

Dr. Mostafa M. ElHady

Lecturer of Biochemistry

Faculty of science

2016

Approval sheet

Evaluation of TNF α and TGF β polymorphism in Egyptian patients with Chronic HCV

Submitted By Sally Farouk Abdel-Aziz Abdel-Khalik

Bachelor in Science (2009)

Researcher Assistant – Microbial Biotechnology Department

National Research Center

Under supervision of

Prof. Dr. Ahmed M. Salem Prof. Dr. Mostafa K. ElAwady

Professor of Biochemistry Professor of Molecular Biology

Faculty of Science National Research Center

Dr. Mostafa M. ElHady

Lecturer of Biochemistry

Faculty of science

Examination Committee

Date / /			Approval Date	/	/
University Council approved	/	/			

Dedication

I dedicate this work to

My Great Family
My Great Dad
My Kind Mum

My Beloved Sister& Brother

Thank you for all what you do for me.....

Yours,

Sally Farouk

ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful All praise and glory to Almighty Allah who gave me courage and patience to carry out this work. Peace and blessing of Allah be upon last Prophet Muhammad (Peace Be upon Him).

I would like to express my deepest appreciation, gratefulness & sincere thanks to **Professor Dr. Ahmed Mohamed Salem**, Professor of Biochemistry, Faculty of Science, Ain Shams University for his kind supervision, help, encouragement, guidance and advice.

My deepest heartfelt gratefulness and appreciation to Professor Dr. Mostafa K. El Awady, Professor of Molecular Genetics, Microbial Biotechnology Department, National Research Center, for suggesting the point of this thesis and for his kind supervision, continuous support and valuable guidance. I am very lucky to have this great opportunity to be one of his students.

I would like to express my great thanks, appreciation and gratitude to **Dr. Mostafa Mohamed ElHady**, Lecturer of Biochemistry, Faculty of Science, Ain Shams University for his

kind supervision, help, encouragement, guidance, patience and advice in writing, revising to complete this thesis.

I am deeply indebted to **Prof Dr. Noha Gamal El-Din**, professor of Molecular Genetics, Microbial Biotechnology Department, National Research Center for her kind supervision, continuous support, valuable guidance and generous help in all the theoretical and practical aspects also for her encouragement, patience and for her great effort with me along completing this thesis. No words are sufficient to express heartfelt deep thanks to her.

My sincere thanks and Great gratitude to **Dr. Reem El Shennawy**, Researcher, Microbial Biotechnology Department,
National Research Center and internal supervisor for this
work in the NRC, for her sincere guidance, generous help,
encouragement, patience, care, kindness and love.

I would like to express my deep thanks to my colleagues & beloved Friends, Rehab I Moustafa, Ghada M Salum, Tawfeek Hussien Eman Salem, Assistant Researchers, Microbial Biotechnology Department, National Research Center, for their help, endless support, continuous motivation, encouragement, advice, care & kindness.

I would like to express my great thanks, appreciation and gratitude to Associate prof Dr. Ahmed Khairy, Endemic Medicine Department, Faculty of Medicine, Cairo University for blood samples collection, patients clinical data, patients history records & Fibroscan assay.

Finally, I would like to express my deep thanks to my friends, colleagues and to all members of Microbial Biotechnology Department, National Research Center & all Members of Biochemistry department, Faculty of Science, Ain Shams University who helped me to accomplish this work.

Yours,

Sally Farouk

Contents

Acknowledgement

List of Abbreviations

List of Figures

List of Tables

Abstract	1
Aim of Work	2
1. Introduction	3
2. Review of Literature	7
2.1 Discovery of HCV	7
2.2 Epidemiology of HCV	7
2.3 Transmission of HCV	9
2.3.1 Intravenous drug use	9
2.3.2 Healthcare exposure	10
2.3. 3 Body modification	11
2.3.4 Shared personal items	11
2.3.5 Vertical transmission	12
2.4 Transmission of HCV in Egypt	12
2.5 Molecular Virology of HCV	13
2.6 HCV Life Cycle & Replication	15
2.7 HCV genotypes	18
2.8 Natural History of HCV Infection	19
2.9 Immune Response during HCV Infection	22
2.10 Factors Affecting HCV Disease Progression	24
2.10.1 Viral Factors	24
2.10.2 Environmental Factors	25
2.10.2.1 Alcohol Consumption	25
2.10.2.2 Smoking	26

2.10.2.3 Schistosomiasis Co-infection	26
2.10.2.4 Hepatitis B Co-infection	26
2.10.2.5 Metabolic Factors: Steatosis, Insulin	27
2.10.3 Host Factors	27
2.10.3.1 Age and Duration of Infection	27
2.10.3.2 Gender	28
2.10.3.3 Race	28
2.10.3.4 Strength of Immune Response	29
2.10.3.5 Other Host Genetic Factors	30
2.11 Tumor Necrosis Factor α (TNFα)	33
2.11.1 TNF Cell Signaling	34
2.11.2TNF Gene Different Single nucleotide	36
Polymorphisms associated with different diseases	50
2.11.2.1 TNF -308 gene polymorphism	37
2.11.2.2 TNF polymorphism and HCV disease	39
progression	
2.12 Transforming growth factor beta (TGF β)	41
2.12.1 TGF Cell Signaling	43
2.12.2 TGF signaling SMAD pathway & Apoptosis	44
2.12.3 TGF in Immune system Regulation	44
2.12.4 TGF in Development& Cancer	45
2.12.5 TGF in Diabetes& Multiple Sclerosis (MS)	46
2.12.6 TGF gene polymorphisms	47
2.12.6.1 TGF beta -509 in HCV disease progression	48
2.13 SNP genotyping	49
2121E B IM (1 1	40
2.13.1 Enzyme Based Methods	49
2.13.2 Restriction fragment length polymorphism	50
2.13.3 PCR-based methods	50
2.13.4 Flap endonuclease	51
2.13.5 5'- nuclease	52

2.13.6 Oligonucleotide Ligation Assay	54
2.13.7 Hybridization-based methods	55
2.13.8 Dynamic allele-specific hybridization	55
2.13.9 Molecular beacons	56
2.13.10 SNP Microarray	58
3-Subjects & Methods	60
3.1 Subjects	60
3.1.1 Inclusion Criteria	61
3.1.2 Exclusion criteria	61
3.1.3 Subjects in the present study were classified	61
3.1.4 Sample Collection	62
3.2 Biochemical analysis	63
3.2.1 Alanine Transaminase (ALT) assay	63
3.2.2 Aspartate Transaminase (AST) Assay	65
3.2.3 Alkaline phosphatase (ALP) Assay	67
3.2.4 Total Bilirubin Assay	68
3.2.5 Albumin Assay	70
3.2.6 Platelet count	71
3.3 Detection of HCV RNA	72
3.3.1 Viral RNA Extraction	72
3.3.2 Quantitative HCV RT- PCR	75
3.4 Genomic DNA Extraction	77
3.5 Amplification of -308 TNF Gene & -509 TGF Gene	80
byPolymerase Chain Reaction	
3.5.1 TNF -308 gene Amplification	81
3.5.2 TGF -509 Gene amplification	82
3.6 Agarose gel electrophoresis	83
3.7 RFLP Analysis (Restriction Fragment Length	85
Polymorphism).	

3.8.1 Quantitative detection of human TNFα protein	86
3.8.2 Quantitative detection of human TGF protein	89
3.9 Statistical Analysis	92
4 Results	93
4.1. The clinical data of control & patients	93
4.2 Amplification of TNFα –308 G/A polymorphism by	95
Polymerase chain reaction	
4.3 Amplification of TGFβ –509 C/T polymorphism by	96
Polymerase chain reaction	
4.4 Detection of TNFα –308 G/A polymorphism by RFLP	97
analysis	
4.5 Detection of TGFβ1 -509 C/T polymorphism by	99
RFLPanalysis	
4.6 Distribution of TNF α -308 genotypes in Controls &	101
HCV patients	
4.7 Distribution of TGFβ1 -509 genotypes in Controls &	104
HCV patients	10.
4.8 Frequency of each TNFα -308genotype and allele in	107
Controls & HCV patients	
4.9 Frequency of each TGFβ1 -509 genotype & allele in	111
Control & HCV patients	
4.10 Distribution of TNF α -308 genotypes in early and late	115
HCV Fibrosis patients	440
4.11 Distribution of TGF β 1 -509 genotypes in early and late	118
HCV Fibrosis patients	101
4.12 Frequency of each TNF α -308 genotype in Early & La Fibrosis patients	.121
4.13 Frequency of each TGFβ1 -509 genotype in Early &	122
Late Fibrosis patients	144
4.14 The TNF α and TGF β 1 serum level in 122 subjects	123
4.15 Table 8. The influence of TNF α -308 and TGF β 1 -509	
- 	

polymorphisms on TNF α and TGF β 1 serum level in HCV	
infected patients	
4.16 Table 9: The influence of TNF α -308 and TGF β -509	127
genotypes on hepatic fibrosis progression	
4.17 Table 10. The influence of combined TNF α -308 and	129
TGFβ -509 genotypes on liver parameters	
5-Discussion	130
6- Summary	142
7- References	146
Arabic Summary	
Arabic Abstract	

List of Abbreviations

Ab	Antibody
ALP	Alkaline phosphatase
ALT	Alanine Transaminase
ANOVA	Analysis Of Variance
ARE	A-U Rich Element
ARFP	Alternative Reading Frame Protein
AST	Aspartate Transaminase
BMI	Body Mass Index
CCR5	C-C chemokine Receptor Type 5
CD	Cluster Differentiation
CDK	Cyclin Dependent Kinase
CTL	Cytotoxic T Lymphocyte
DASH	Dynamic allele-specific hybridization
DNA	Deoxy ribonucleic acid
E1	Envelope 1
EAE	Experimental Autoimmune Encephalomyelitis
ELISA	Enzyme Linked immunosorbent Assay
F0	Fibrosis grade Zero
FEN	Flap endonuclease
FOXP3	Forkhead box protien
FRET	Fluorescence resonance energy transfer

HBV	Hepatitis B Virus
HCC	Hepatocellular Carcinoma
HCV	Hepatitis C Virus
HIV	Human Immunodeficiency Virus
HLA	Human Leukocyte Antigen
IDDM	Insulin Dependent Diabetes Mellitus
IDU	Intravenous Drug Use
IFN	Interferon
IL	Interleukin
IRES	Internal ribosome entry site
ISDR	Interferon Sensitivity Determining Region
KDa	Kilo Dalton
Kpa	Kilo Pascal
LAP	Latency Associated Pepetide
LDH	Lactate Dehydrogenase
LDL	Low Density Lipoprotein
MCP-1	Monocyte Chemoattractant protein
MHC	Major Histocompatibility Complex
MMP-3	Matrix Mettalloprotienase-3
mRNA	messenger Ribonucleic acid
MS	Multiple Sclerosis
NADH	Nicotinamide Adenine Dinucleotide dehydrogenase

NANBH	Non A non B hepatitis
NS	Non Structural protein
P21	Cyclin dependent kinase inhibitor 1
PCR	Polymerase Chain Reaction
PDGF	Platelet Derived Growth Factor
QTL	Quantitative Trait Loci
RANK	Receptor Activator Of Nuclear Factor KB
Rb	Retinoblastoma protein
RFLP	Restriction Fragment Length Polymorphism
RNA	Ribonucleic acid
RT-PCR	Real Time- Polymerase Chain Reaction
SD	Standard Deviation
SMAD	Small Mothers Against decapentaplegic
SNP	Single Nucleotide Polymorphism
SPSS	Statistical package for social science
SRBI	Scavenger Receptor Class B Type 1
TACE	TNF Alpha Converting Enzyme
TGF	Transforming Growth Factor
Th	T Helper Cell
TIMP-1	Tissue Inhibitor Metallopeptidase
Tm	Melting Temperature
TNF	Tumor Necrosis Factor

TNFR	Tumor Necrosis Factor Receptor
Treg	T Regulatory Cells
UTR	UnTranslated Region