

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING MECHANICAL POWER ENGINEERING DEPARTMENT

THE ANALYSIS OF THE NON-RESIDENTIAL INSTANTANEOUS COOLING LOAD COMPONENTS AND ITS PARAMETERS FOR CONTINUOUS SUMMER AIRCONDITIONING ON A HEAT BALANCE BASIS USING FINITE-DIFFERENCES

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering

by

Muhammad Hamdy Ahmad Muhammad El-bassoussi

B.Sc. of Mechanical Engineering, 2008 Demonstrator in the Mechanical Power Engineering Department Faculty of Engineering – Ain Shams University

Supervised by

Dr. Hussein Zaky Barakat

Professor Mechanical Power Engineering Department Faculty of Engineering – Ain Shams University

Dr. Ahmed Youssef El-Assy

Associate Professor Mech. Power Engineering Dept. Faculty of Engineering Ain Shams University

Dr. Nashwa Abbas Mohammed

Assistant Professor Mech. Power Engineering Dept. Faculty of Engineering Ain Shams University

Cairo - 2016

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING MECHANICAL POWER ENGINEERING DEPARTMENT

THE ANALYSIS OF THE NON-RESIDENTIAL INSTANTANEOUS COOLING LOAD COMPONENTS AND ITS PARAMETERS FOR CONTINUOUS SUMMER AIRCONDITIONING ON A HEAT BALANCE BASIS USING FINITE-DIFFERENCES

by

Muhammad Hamdy Ahmad Muhammad El-bassoussi

Demonstrator in the Mechanical Power Engineering Department Faculty of Engineering – Ain Shams University

Examiners Committee:	Signature
Prof. Dr. Ibrahim Mohamed Ismail	
Mechanical Engineering Department	
Faculty of Engineering – Assiut University	
, , ,	•••••
Prof. Dr. Adel Abdel Malek El'Ehwany	
Mechanical Power Engineering Department	
Faculty of Engineering – Ain Shams University	
	•••••
Prof. Dr. Hussein Zaky Barakat	
Mechanical Power Engineering Department	
Faculty of Engineering – Ain Shams University	
	•••••
Assoc. Prof. Dr. Ahmed Youssef El-Assy	
Mechanical Power Engineering Department	
Faculty of Engineering – Ain Shams University	
•	•••••

Date: / 2016

STATEMENT

This thesis is submitted to the Faculty of Engineering, Ain Shams University, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering, Power Section.

The work included in this thesis was carried out by the author in the Mechanical Power Engineering Department, Faculty of Engineering, Ain Shams University.

The author carried out the work included in this thesis, and no part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Name : Muhammad Hamdy Ahmad Muhammad El-bassoussi

Signature:

Date : / / 2015

RESEARCHER DATA

Muhammad Hamdy Ahmad Muhammad

Signature:

El-bassoussi Date of birth November 26, 1986 Place of birth Cairo, Egypt Academic degree B.Sc. of Mechanical Engineering Field of specialization Mechanical Power Engineering University issued the degree Faculty of Engineering, Ain Shams University, Cairo, Egypt July, 2008 Date of issued degree **Current position** Demonstrator, Mechanical Power Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt

Name

ABSTRACT

Prediction of building cooling loads is one of the key factors in building design where the selection of an appropriate air-conditioning system necessitates accurate information associated with the cooling load. Cooling load calculations can significantly affect the first cost of building construction, and the comfort and productivity of building occupants, as well as the building operating cost and energy consumption.

Actually, accurate estimation of building cooling loads requires the application of the heat balance method (HDM). This method is the most scientifically rigorous method that comprises the implementation of a full heat balance, i.e. the application of the first law of thermodynamics, to the external and the internal fabrics of the conditioned zone, together with its outside and inside boundary conditions, and solving the transient heat conduction equations for all of the structural components enveloping the zone.

This thesis utilizes a one-dimensional transient heat conduction numerical model to calculate zone cooling loads on a heat-balance basis. The Barakat and Clark alternating direction explicit (ADE) unconditionally-stable finite difference scheme is applied to solve the fundamental transient heat conduction equations for all of the structural components enveloping the zone with suitable initial and steady-periodic boundary conditions. The ASHRAE Clear-Sky Solar Model is used with its revised solar data in 2005 to calculate the total incident solar radiation. The differences between the revised and the old solar data of this solar model and their effects on the cooling load results are explained.

vi Abstract

Cooling loads for different zone classes are calculated and the contributions of different heat gain components to the cooling loads are investigated. Some of the cooling load results are compared with the ASHRAE cooling load data and pronounced differences have been obtained from this comparison.

The effects of corners, as well as the effects of the external and the internal thermal conditions, on the cooling loads are also investigated. Moreover, the current model is also used to generate updated and revised cooling load tables to serve as a single-step cooling load calculation method on a heat balance basis .

The validation process of the applied numerical model is incorporated in this thesis with the choice of the suitable spatial and time increments that give results with acceptable degree of accuracy. The verification of the constructed computer code is also included.

ACKNOWLEDGEMENTS

All praise is due to Allah, Most Merciful, the Lord of the Worlds, Who taught man what he knew not. I would like to thank Allah, my Creator, for giving me a still functioning body and mind in order to live life and learn. I would like to thank Allah Almighty for bestowing upon me the chance, strength and ability to complete this work.

To my supervision committee, Prof. Dr. Hussein Zaky Barakat, Assoc. Prof. Dr. Ahmed Youssef El-Assy, and Assis. Prof. Dr. Nashwa Abbas Mohammed, I am extremely grateful for your assistance and suggestions throughout my work. I cannot find enough words to express my endless gratitude to Prof. Dr. Hussein Zaky Barakat for his insightful comments and help, and for his very encouraging and supportive tutoring and management throughout this work as well as my professional career. He has pushed me farther than I thought I could go. I ask Allah to grant him health and wellness.

I would like to express my eternal appreciation towards my parents and family who have always been there for me no matter where I am. Thank you all for your dedication, for your unconditional supports, for your patience, and for your prayers.

I would also like to thank all my dear friends, colleagues, and students. Special thanks go to my friends Muhammad Omar Darwish and Wessam for their help in writing this thesis in LATEX.

TABLE OF CONTENTS

Abstrac	ct			V
Acknow	ledgem	nents		vii
Table o	f Conte	ents		ix
List of	Figures	3	3	xiii
List of	Tables		xx	vii
Nomen	clature		XXX	ciii
Chapte	r 1: In	ntroduction		1
1.1	Gener	ral Background		1
	1.1.1	Classification of Heat Gains		2
	1.1.2	Classification of Cooling Loads		2
	1.1.3	Thermal Storage Effect		3
1.2	Motiv	vation		4
1.3	Objec	etives of the Present Work		6
1.4	Thesis	s Outline		7
_		rief Review of the Common Cooling Load Calculation		
		or Non-Residential Buildings		9
2.1		American (ASHRAE) Methods		10
	2.1.1	TETD/TA Method		11
	2.1.2			12
	2.1.3	CLTD/SCL/CLF Method		13
	2.1.4	ASHRAE HBM Method		15
9.9	2.1.5	RTS Method		17
2.2	U.K.S	s Admittance Method		19
_		eat Analysis for the Opaque Fabrics Enveloping		•
the	Zone			21

Table of Contents

3.1	Modeli	ing the Transient Heat Conduction Process within the	
	Zone F	Fabrics	22
	3.1.1	The Barakat and Clark Finite Difference Scheme	24
3.2	Modeli	ing the Internal Longwave Radiation Exchange	26
3.3		oution of the Transmitted Solar Radiation	28
3.4	Distrib	oution of the Internal Heat Gains	30
3.5		ure Representation Model	30
3.6		e Heat Balance for Sunlit Walls and Roofs	32
	3.6.1	External-Surface Heat Balance for a Sunlit Exterior	
		Wall or Roof	33
		3.6.1.1 Outdoor-Air Temperature Model	37
		3.6.1.2 Solar Radiation Model	37
	3.6.2	Internal-Surface Heat Balance for a Sunlit Exterior Wall or Roof	43
3.7	Hoat F	Balance for the Other Interior Surfaces	46
5.1	meat L	parameter for the Other Interior Surfaces	40
Chapte	r 4: He	eat Analysis for Glazed Windows	51
4.1	Detern	nination of the Solar-Optical Properties	
	of a W	Vindow System	52
	4.1.1	Determination of the Solar-Optical Properties of a	
		Window System without Shading Devices	52
	4.1.2	Determination of the Solar-Optical Properties of a	
		Window System with Shading Devices	54
		4.1.2.1 Determination of the Solar-Optical	
		Properties of Horizontal Slat-Type	
		Shading Devices	57
4.2	Heat A	Analysis Models for Multi-Layer	
	Windo	w Systems	58
	4.2.1	Heat Analysis between Two Adjacent Glazing Layers	
		in a Window System	60
	4.2.2	Heat Analysis at the Outdoor-Side Glazing Surface of	
		a Window System	61
		4.2.2.1 Heat Analysis at the Outdoor-Side Glazing	
		Surface of a Window System with an	
		Exterior Shading Device	63
	4.2.3	Heat Analysis at the Indoor-Side Glazing Surface of a	
		Window System	66
Chanta	n 5. Ca	so Studios le the Corresponding	
_		se Studies & the Corresponding Discussions	69
5.1		ting the Model Accuracy and Choosing the Spatial and	บฮ
0.1		Increments	70

Table of Contents xi

5.2	Gener	ral Assumptions and Zone Characteristics	8
5.3	Coolii	ng Load Calculation Procedure 8	2
5.4	Code	Verification	5
5.5	Comp	earison with ASHRAE Results 8	7
	5.5.1	Comparing Cooling Loads from	
		Sunlit Walls and Roofs 8	8
	5.5.2	Comparing Cooling Loads from	
		Internal Heat Sources	5
	5.5.3	Comparing Cooling Loads from	
		Windows	8
5.6	Furth	er Investigations Included in the Current Work $\dots \dots 10$	6
	5.6.1	Investigating the Influence of the Furniture Model	
		on Cooling Loads	6
	5.6.2	Investigating the Internal Thermal Conditions	
		in the Surrounding Zones	1
	5.6.3	Investigating the External Thermal Conditions	
		Under Variable Wind Velocity	0
	5.6.4	Investigating the Influence of the Color of the External	
		Sunlit Surfaces on Cooling Loads	3
		5.6.4.1 Application of the Superposition Principle	
		to Determine the Color Effect 14	8
	5.6.5	Investigating the Influence of Corners	
		on Cooling Loads	0
	5.6.6	Investigating the Influence of the Window Surface	
		Area on Its Cooling Load Components	
5.7	Revise	ed CLTD Tables for Walls and Roofs 16	4
	5.7.1	CLTD Corrections for Outdoor- and Indoor-Air	
		Temperatures	6
	5.7.2	CLTD Corrections for Light-Colored	
		External Sunlit Surfaces	
	5.7.3	CLTD Corrections for Months and Latitudes 17	
	5.7.4	New CLTD Tables for Corner Walls and Roofs 17	
5.8		ed CLF Tables for Internal Loads 17	8
	5.8.1	Applying the Superposition Principle with	
		the CLF Values of the Internal Loads	9
5.9		ed Conduction and Solar Cooling	
	Load	Tables for Windows	1
Chapte	r 6: C	onclusions 19	9
Referer	ices	20	1