RANGE POTENTIALITY OF SOME PLANT COMMUNITIES IN NORTH WESTERN COAST OF EGYPT

By

YASSER MOHAMED ABD EL-KARIEM YOUSSEF

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2006

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Agricultural Science (Agronomy)

Department of Agronomy
Faculty of Agricultural
Ain Shams University

Approval Sheet

RANGE POTENTIALITY OF SOME PLANT COMMUNITIES IN NORTH WESTERN COAST OF EGYPT

By

YASSER MOHAMED ABD EL-KARIEM YOUSSEF

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2006

This thesis for M.Sc. degree has been approved by:	
Dr. Salah Saad Awad	•••••
Prof. Emeritus of Plant Ecolog	gy and Range Management, Desert
Research Center.	
Dr. Ramadan Thabet Abed Rabl	bo
Prof. Emeritus of Agronomy,	Faculty of Agricultural, Ain Shams
University.	
Dr. Mohamed shokry reiad	
Prof. Emeritus of Agronomy,	Faculty of Agricultural, Ain Shams
University.	
Dr. Hani Saber Saudy	•••••
Assistant Prof. of Agronomy	, Faculty of Agricultural, Ain Shams
University.	

Date of Examination: / / 2013

RANGE POTENTIALITY OF SOME PLANT COMMUNITIES IN NORTH WESTERN COAST OF EGYPT

By

YASSER MOHAMED ABD EL-KARIEM YOUSSEF

B.Sc. Agric. Sc. (Agronomy), Ain Shams University, 2006

Under the supervision of:

Dr. Mohamed Shokry Reiad

Prof. Emeritus of Agronomy, Department of agronomy, Faculty of Agricultural, Ain Shams University (Principal Supervisor)

Dr. Hani Saber Saudy

Assistant Prof. of Agronomy, Department of Agronomy, Faculty of Agricultural, Ain Shams University

Dr. Mohamed Abou El- Magd El- Shesheny

Researcher, plant Ecology& Range Management department, desert research center

Dr. Nasser El-Sayed Alberdeny

Assistant Prof. of Animal Production, Department of Animal Production, Faculty of Agricultural, Ain Shams University

ACKNOWLEDGMENT

The author wishes to express his sincere appreciation and gratitude to his major **Prof. Dr. Mohamed Shokry Reiad,** Professor of agronomy, agronomy department, faculty of agriculture, Ain Shams University for suggesting the problem, valuable supervision, helpful suggestions and fruitful advice during the entire course of the work as well as his valuable effort during the preparation of the manuscript.

Deep gratitude also due to **Assistant Prof. Hani Saber Saudy** Assistant Professor of the agronomy, agronomy department, faculty of agriculture, Ain Shams University for his supervision and helpful assistance during the achievement of his work.

Sincere thanks and deep gratitude are due to **Dr. Mohamed Abou el- magd El- Shesheny** Researcher, plant ecology & range management depart desert research center for his supervision, and help in the practical part of his work. Also, deep gratitude is due to **Assistant Prof. Nasser El-Sayed Alberdeny** Assistant Prof. of Animal Production, Department of Animal Production, Faculty of Agricultural, Ain Shams University for his supervision, and help in the practical part of his work.

Sincere thanks are expressed to all staff members of agronomy department, faculty of agriculture, Ain Shams University. Also, deep gratitude is due to my family and my dear wife for their help and support.

ABSTRACT

Yasser Mohamed Abd El- Kariem Youssef: Range Potentiality of Some Plant Communities in North Western Coast of Egypt. Unpublished M.Sc. Thesis, Agronomy Department, Faculty of Agricultural, Ain Shams University, 2013.

This investigation was carried out during the period extending from spring 2008 till autumn 2009 at North Western Coast (NWC) of Egypt. Which were studied the natural vegetation qualitatively and quantitatively in relation to the effect of the following ecological factors:

1- Plant association:

Two different associations in location grow the sea water level. The first is association of (*Salsola tetrandra* located at latitudes of 31^o 31' 45" N and longitudes of 26^o 18' 27" E with 10 m elevation and the second one is *Haloxylon salicornicum* located at latitudes of 31^o 30' 0" N and longitudes of 26^o 16' 37" E with elevation of 171m from the sea water level.

2- Growth seasons:

Two growth seasons were chosen representative two different climatologically, i.e. spring and autumn.

The main results obtained were as follow:

a- Plant association:

Plant composition showed that 34 plant species belonging to 14 families were recorded under both studied associations during spring 2008 till autumn 2009. The Asteraceae family has a wide distribution (eight species as 23.5%). *Haloxylon* association was shown to have more plant families (14 families) than that of *Salsola* one (12 families). Plant density (plant/ m²) had significant difference between *Salsola* associations and *Haloxylon* one in the second year only, in this respect. Coverage percentage and abundance percentages had in significant differences. Results were true in both studied years. Frequency percentage indicated

that *Haloxylon* association was the highest frequency percentage compared with *Salsola* association. Dry forage yield (Kg. / fed.) indicated that, no significant differences were found, and these results were true in the both studied years.

Nutrients yield Insignificant differences were recorded between *salsola* association and *Haloxylon* association in dry matter, organic matter, Ash, crude protein, ether extract, crude fiber, carbohydrate and Invitro dry matter digestibility (INVDMD).

b- Growth Season

Plant composition showed great differences between autumn and spring families measurements of plant and species, palatability unpalatability, annual and perennial plant species. The highest plant density was noticed in wet season (spring season). Coverage percentage was greater in spring season as compared with autumn season in both years. Abundance percentage was greater in autumn season as compared with spring season in both studied years. The maximum value of frequency percentage was noticed in spring season in both studied years, whilst the minimum value was obtained in autumn season in the two years of study. Dry forage yield was not similar for both autumn and spring seasons in both years of study 2008 and 2009. Dry forage yield was significant and greater in spring season compared with that of autumn one. This trend was true in both years of study. Spring season recorded significantly higher dry matter compared to autumn . Ash, crude protein, ether extract, crude fiber, carbohydrate contents and INVDMD, were significantly affected by seasons. Results revealed that the highest values of Ash, crude protein, ether extract, crude fiber, carbohydrate contents and INVDMD, were obtained with spring season and the lowest value were observed with autumn one.

C. Effect of the interaction between plant association and growth season.

The highest value Plant density was recorded with *Haloxylon* association under spring season through the two studied years. The higher values of abundance% were found with *Haloxylon* association in autumn

season. Coverage percentage scored the highest value was obtained under *Salsola* along *Haloxylon* association in spring season in the two studied years. Frequency percentage scored the highest value in spring season in the two years of study. Dry forage yield (Kg. / fed.) In the two years the highest value were recorded under spring season. The maximum values of DM contents were recorded of *salsola* association in spring season. Results indicated that the higher values of OM contents were found with *Haloxylon* association in spring season, whilst the maximum values for Ash showed with *salsola* association in spring season. The highest contents of crude protein and carbohydrate were obtained in *Haloxylon* association in spring season. In spring season, *salsola* association recorded the highest value of ether extract, INVDMD and crude fiber contents. Results between *Haloxylon* associations recorded the highest value in gross energy, digestible energy, metabolizable energy and total digestible nutrients.

Key Words: North Western Coast of Egypt, Plant association, Plant density, coverage, Frequency, Dry forage yield, Chemicals contents,

CONTENTS	Page
LIST OF TABLES	VI
INTRODUCTION	1
REVEW OF LITERATURE	4
MATRIALS AND METHODS	24
RESULTS AND DISCUSSION	28
I- Environmental condition	28
1-Seasonal variation	28
2- Soil physical and chemical analysis	31
II- Natural vegetation behavior	33
1- Plant composition	33
a- Effect of plant association	33
b- Effect of growth season	33
2- Plant density (plant/ m ²⁾	36
a- Effect of plant association	36
b- Effect of growth season	36
c- Effect of the interaction between plant association and	36
3-Abundance percentages	42
a- Effect of plant association	42
b- Effect of growth season	42
c- Effect of the interaction between plant association and	
4- Coverage percentage	45
a- Effect of plant association	45

b- Effect of growth season	45
c- Effect of the interaction between plant association and	45
5- Frequency percentage	49
a- Effect of plant association	49
b- Effect of growth season	49
c- Effect of the interaction between plant association and	49
IV-Importance value	54
III - Dry forage yield (Kg. / fed.)	56
a- Effect of plant association	56
b- Effect of growth season	56
c- Effect of the interaction between plant association and	56
V- Chemicals contents and biological evaluation Percentage a	and yield
Effect of plant association	60
SUMMARY	82
REFERNCES	89
ARABIC SUMMARY	99

LIST OF TABLES

1	Monthly averages of climatic factors at Marsa Matruh city during
	2008 and 2009
2	Soil physical properties of the two studied associations31
3	Soil chemical properties of the two studied associations32
4	Plant composition, palatability and duration of the studied
	association under different growth season during autumn
	2008 till spring 2009 at sidi- barrani
5	plant composition situation of the studied growth season and
	Plant associations during autumn 2008 till spring 200936
6	Influence of association and growth season on plant
	density (plant/m ²) in the during autumn 2008 till spring
	2009 at sidi- barrani
7	influence of plant association, growth season and their
	interaction on plant density (plant/m ²) in the during autumn
	2008 till spring 2009 At sidi- barrani
8	influence of association and growth season on Relative plant
	density (plant/m ²) in the during autumn 2008 till spring 2009
	at sidi- barrani
9	Influence of association and growth season on abundan (%) in
	the during autumn 2008 till spring 2009 At sidi- barrani40

10 influence of plant association and growth season and
interaction between them on abundance percentage in
the during autumn 2008 till spring 2009 at sidi- barrani43
11 influence of association and growth season on coverage (%)
In the during autumn 2008 till spring 2009 At sidi- barrani44
12 influence of plant association and growth season on and
interaction between them coverage percentage in the during
autumn 2008 till spring 2009 at sidi- barrani46
13 influence of association and growth season on relative coverage
(%) in the during autumn 2008 till spring 2009 At sidi-barrani48
14 influence of association and growth season on frequency (%) in
the during autumn 2008 till spring 2009 at sidi- barrani51
15 effect of plant association and growth season and their
interaction on plant frequency percentage during two studied seasons52
16 influence of association and growth season on Relative frequency
in the during autumn 2008 till spring 2009 at sidi- barrani53
13 influence of association and growth season on Relative Importance
in the during autumn 2008 till spring 2009 at sidi- barrani55
14 influence of association and growth season on dry forage yield
(kg./fad.) in the during autumn 2008 till spring 2009 at
sidi- barrani

15	effect of the growth seasons and plant association on some
	chemicals contents and biological evaluation percentage70
16	effect of the growth seasons and plant association on some
	chemicals contents and biological evaluation amount

INTRODUCTION

Under Egyptian conditions, peoples suffer from great lack in animal protein consumption than demands. This due mainly to the great lack in animal production which is greatly effected with several reasons. One of the main reasons is the great lack in the needed forage to face the animal's demands in feeding especially during summer season.

It is possible to solve this problem through different ways such as increasing forage crops through different ways such as increasing forage crops area mainly in the new reclaimed lands, introducing new productive forage crops, the use of crop production wastes, as well as increasing the productivity of the natural vegetation of the different locations in Egypt i.e., north eastern and western coast, red sea coast as well as extending till Halayeb and Shalaten. Under these locations, there are great areas which can reach about four millions faddan covered with a natural vegetation mainly to supply the present various animal types i.e., sheep's, goats, camels and wild types with most of their demands especially during the rainy seasons. Natural vegetation acts in most countries of the world as a main resource for supporting wild and domestic animals with its basic forage requirements. The productivity and quality in relation to the prevailing environmental conditions need to be assessed and clarified in order to get more justification for the optimum and adequate use for better range management.

Range production depends on various factors such as climate, soil, botanical composition, type and intensity of management e.g. Grazing patterns and stocking rates and wild life (including insect and rodents); climatic elements such as rainfall and temperature are the two most important factors affecting distribution as between them they are responsible for the amount of moisture which the vegetation will receive (**Shahba 1994**).

The North West Coast (NWC) region of Egypt is one of the arid regions which have a long history of intensive land use, mainly grazing and

rainfed farming. This area is extended to 480 km along the Mediterranean Sea from west Alexandria to EI-Saloom region boundaries with a depth of about 25-60 km south inland from the sea shore. It is considered one of the rich areas for grazing in the Egyptian costal region (Heneidy, 2002). The most important land-use in the NWC region of Egypt is grazing. The natural vegetation includes many annual plant species, mostly perennial herbs, few grasses, shrubs, sub-shrubs and a few trees. These species represent 50 % of the total flora of Egypt (UNESCO, 2003). This natural vegetation needs to be investigated in order to determine its present condition and trend whatever going to progress or deterioration.

It is well known that the natural vegetation is found alwaysly in an equilibrium with the dominant ecological conditions in the locations such as , climatic, edaphic and biological factors. Needs to study these reactions is more important in order to plan how to manage the way to improve the productivity of this range areas Under North Western Coast of Egypt, several studies proved that the natural vegetation is in case of great deterioration due to many factors mainly grazing, it was in the improper season of use, holding with the uncorrected type and number of animals as well as the animal distribution within the grazed areas. This finally can induce an invaluable events such as decreasing the vegetation composition since the palatable species will decrease and dominancy by the unpalatable ones, decreasing in the plants species, frequency, density, coverage and forage productivity. Accordingly, it is needed to try to making diction to improve whatever naturally or artificially revegetation. Since the natural vegetation is composing of different associations according to the different edaphic factors as well as its stratification and conditions due to the climatologically ones; it is more valuable and helpful in determining the optimum way in range improvement to get more forage production. Also, it is well known in case of artificial revegation under the great state of deterioration of the vegetation that planting with the shrubby starts as which could accelerate the improvement process inducing more basal and canopy cover for the cultivated plant species as well as the invading ones. This can happen during less periods and tend to increase the productivity of the unit area.

The aim of this present investigation is mainly concerned with the following topics:

Indicate the vegetation composition and productivity of different locations of soils near or for away from sea water (saline associations) since the soil salinity is differ much. Also, deter mine that.

Vegetation through growth season mainly spring and autumn and biological value of the vegetation due to these factors.