

Molecular Design and Synthesis of Fused Pyrimidine Derivatives with Potential Anti-Cancer Activity

Thesis Presented by:

Khaled Ali Saleh G. Abdallah

Bsc. of pharmaceutical sciences, May 2004
Faculty of Pharmacy, Ain Shams University
Submitted for the partial fulfillment of the

Master degree

In pharmaceutical sciences (Pharmaceutical Chemistry)

Supervised by:

Prof.Dr. Dalal A. Abou El-Ella

Professor & head of the
Pharmaceutical Chemistry
Department
Faculty of Pharmacy
Ain Shams University

Prof.Dr. Khaled A. M. Abouzid

Professor of Pharmaceutical Chemistry & vice dean of educational & student affairs Faculty of Pharmacy Ain Shams University

Prof.Dr. Mahmoud M.A. Hassan

Professor & head of the Pharmaceutical Chemistry Department Faculty of Pharmacy Egyptian-Russian University

> Faculty of Pharmacy Ain Shams University 2010

Approval Sheet

Name	Signature
Prof.Dr. Dalal A. Abou El-Ella	••••••
Prof.Dr. Khaled A. M. Abouzid	•••••
Prof.Dr. Mahmoud M.A. Hassan	••••••
Prof.Dr. Mohammed A. Ismail	••••••
Prof.Dr. Nihad Elsaid Abou El-Magd	• • • • • • • • • • • • • • •

Acknowledgement

Words can't help me in expressing my deep appreciation, respect and gratitude to my great supervisors "Prof.Dr. Dalal A. Abou El-Ella and Prof.Dr. Khaled A. M. Abouzid" for their great support, kind help, work design, valuable Ideas, precious guidance and continuous encouragement during all stages of this work. Thank you for your great efforts and tremendous support which allowed this thesis to appear in its final form. Also, I would like to express my gratefulness to Prof.Dr. Mahmoud M. A. Hassan for his kindness, continuous support and fruitful opinions throughout the whole practical work.

It also gives me pleasure to express my appreciation to Dr. Nadia Hamdy, lecturer of biochemistry, Faculty of Pharmacy, Ain Shams University, for carrying out the enzyme inhibition assay for the new hits. Additionally I should not forget the great help in docking study introduced by Dr. Moustafa El-Araby, lecturer of the pharmaceutical chemistry, Faculty of Pharmacy, Helwan University. and Dr. Nasser Saad, lecturer of the pharmaceutical chemistry, Faculty of Pharmacy, Ain Shams University

I'm also indebted to my parents, my wife and my daughter for their continuous help, understanding, patience and cooperation. Finally, I must thank my upper guide, god father & the kind manager Prof.Dr. Mohammed Ihab Fetouh, the dean of faculty of pharmacy at Egyptian Russian University for his kindness, great assistance & wonderful personality.

Contents

•	Co	entents	V
•	Lis	st of Figures	V
•	Lis	st of Tables	viii
•	Lis	st of Charts	ix
•	Lis	st of Abbreviations	X
•	Ab	stract	xi
•	In	troduction	1
	0	Cancer	2
	0	Treatment of cancer	3
	0	Protein Kinases	11
	0	Tyrosine specific kinases	11
	0	Epidermal growth factor receptors tyrosine	14
		kinases (EGFR TKs) and EGFR TK inhibitors	
	0	Different strategies for inhibition of EGFR	20
		TK activity	
	0	Small molecule tyrosine kinase inhibitors	23
	0	Lapatinib as an unique EGFRTK inhibitor	31
	0	Chemistry background	34
	0	Molecular modeling	40
•	Re	search Objectives	43
•	Th	eoretical Discussion	53
•	Ex	perimental Section	84
•	Bi	ological Screening	119
•	Mo	olecular Docking & Drug Design	134
•	Co	onclusion	154
•	Re	ferences	157

List of Figures

	Title	Page
1	EGFR mediated signal transduction process	18
2	Dimerization of the extracellular domain of EGFR upon ligand binding	18
3	Crystal structure of Tyrosine Kinase domain of EGFR	19
4	Model of the ATP-binding site of EGFR TK	25
5	Binding mode of Erlotinib (12) to the ATP-binding site of EGFR	30
6	Lapatinib in the ATP binding site of EGFR	32
7	Fitting of database molecule to the generated hypothesis	40
8	Docking of a drug into a pocket site	41
9	Similarities of target compounds (XIa-g) and (Xa-i) to Lapatinib (13)	45
10	Structure activity relationship of 4-anilinoquinazolines	48
11	Summary of the % inhibition assay protocol	122
12	EGFR standard curve	125
13	General approach for the rational design of inhibitors	135
14	Redocking of the co-crystallized ligand (Lapatinib)	140
15	The proposed binding mode of Lapatinib	141
16	2D Mapping of Lapatinib in EGFR-TK active site	141
17	Binding mode of compound XIb	142
18	2D Mapping of XIb in EGFR-TK active site	142
19	Binding mode of compound XIg	143
20	2D Mapping of XIg in EGFR-TK active site	143

vii

21	Superposition of XIb on Lapatinib in the EGFR-TK active site	144
22	Superposition of XIg on Lapatinib in the EGFR-TK active site	144
23	Binding mode of compound Xe	145
24	2D Mapping of Xe in EGFR-TK active site	145
25	Binding mode of compound Xc	146
26	2D Mapping of Xc in EGFR-TK active site	146
27	Binding mode of compound XIf	147
28	2D Mapping of XIf in EGFR-TK active site	147
29	Binding mode of compound Xa	148
30	2D Mapping of Xa in EGFR-TK active site	148
31	Binding mode of compound XIc	150
32	Compounds (Xb , XIa , XIe) failed to achieve common binding mode	151
33	Compound (XII), the carbonyl (C=O) group at the C ² had substituted the N ¹ in H-bond accepting	152

List of Tables.

	Title	Page
1	Physical data of compound (II)	86
2	Physical data of compound (III)	87
3	Physical data of compound (VIII)	88
4	Spectral data of compound (VIII)	89
5	Physical data of compounds (Xa-i)	91
6	Spectral and micro-analytical data of compounds (Xa-i)	92
7	Physical data of compound (V)	101
8	Physical data of compounds (VIa-d, f, g)	103
9	Spectral data of compounds (VId,f,g)	104
10	Physical data of compound (VIe)	107
11	Physical data for compounds (XIa-g)	109
12	Spectral and micro-analytical data of compounds (XIa-g)	110
13	Physical data of compound (XII)	117
14	Spectral and microanalytical data of compounds (XII)	118
15	Enzyme inhibitory activity of compounds	126
16	Results of drug cytotoxic activity of active compounds	128
17	Scoring of the active hits & Lapatinib (13)	140
18	Scoring of the inactive hits	149
19	Collective biological data of the most active hits.	156

List of Charts.

	Title	Page
1	EGFR TK activity inhibition % at 10 μM.	126
2	Determination of IC ₅₀ for compound Xa	129
3	Determination of IC ₅₀ for compound Xc	129
4	Determination of IC ₅₀ for compound Xe	130
5	Determination of IC ₅₀ for compound XIb	130
6	Determination of IC ₅₀ for compound XIc	131
7	Determination of IC_{50} for compound XIf	131
8	Determination of IC_{50} for compound XIg	132
9	Presentation of IC ₅₀ for active hits in n mol. & µg/ml	132

List of Abbreviations.

• ABL Abelson Murine Leukemia Viral Oncogene

Homologue

• **2D** Two Dimensional

• **3D** Three Dimensional

• **A**° Angstrom

• **ATP** Adinosine Tri Phosphate

• **BSA** Bovine Serum Albumin

• **CADD** Computer Aided Drug Design

• Calculated

• **CDK** Cyclin Dependant Kinase

• **Cpd** Compound

• **DCC** *N,N'*-Dicyclohexylcarbodiimide

• **DMF** Dimethylformamide

• **DMSO** Dimethylsulfoxide

• **EGFR** Epidermal Growth Factor Receptor

• FAK Focal Adhesion Kinase

• FGFR Fibroblast Growth Factor Receptor

• **hr** Hour

• **HRP** Horseradish Peroxidase

• **I.R.** Infrared

• **IC** Inhibitory Concentration

• **IGFR** Insulin Like Growth Factor Receptor

• **M.** Molecular

• **M.P.** Melting Point

• **M.Wt** Molecular weight

NMR Nuclear Magnetic Resonance

• NRTK Non-Receptor Tyrosine Kinase

• **PBS** Phosphate Buffered Saline

• **Pdb** Protein data bank

• **PDGFR** Platelet Derived Growth Factor Receptor

• **QSAR** Quantitative Structure Activity Relationship

• **RMSD** Root Mean Square Deviation

• **rt** room temperature

• **RTK** Receptor Tyrosine Kinase

• **SRB** Sulfo-Rhodamine-B stain

• **SRC** Sarcoma (Schmidt-Ruppin A-2) Viral Oncogene

• **TGF\alpha** Tumor Growth Factor alpha

• **TK** Tyrosine Kinase

• **TMB** 3,3',5,5'-Tetramethylbenzidine

• **VEGFR** Vascular Endothelial Growth Factor Receptor

ALOSTIACE

Abstract:

In recent years, 4-anilinoquinazolines have emerged as a versatile template for inhibition of a diverse range of receptor tyrosine kinases. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) inhibitors are the most widely studied compounds among all tyrosine kinases. In this work, we present a new sub-family of compounds containing 4-anilinoquinazoline, core as promising potent and selective EGFR inhibitors. Our strategy is directed toward designing a variety of ligands with bulky substituents at the anilino moiety, mimicking that of Lapatinib which is recently launched as potent inhibitor for both EGFR and erbB2.

Three series of new 6,7-dimethoxy-4-substituted-anilino-quinazolines (Xa-i, XIa-g, XII) were designed and synthesized from 4,5-dimethoxyanthranilic acid. EGFR inhibitory activity of the final compounds was assessed. Moreover, the *in vitro* activities of the most active hits were assessed on human breast carcinoma cell line (MCF-7) where the EGFR is highly expressed. Fortunately, compound XIb and XIg displayed highest activity for cell line test. Finally, the active hits and some of the inactive ones were docked to the active site pocket of the EGFR-TK enzyme for investigation of their binding mode to the receptor active site.

This thesis comprises the synthesis of the following unavailable unreported starting materials and intermediates:-

- 1) m-(3-Methylbenzyloxy)acetanilide (**VId**)
- 2) m-(2-(Morpholin-4-yl)ethoxy)acetanilide (VIf)
- 3) m-(3-Fluorobenzyloxy)acetanilide (VIg)
- 4) 4-(3-Carboxyanilino)-2-chloro-6,7-dimethoxyquinazoline (VIII).

In addition the study comprises the synthesis of the following new compounds:-

- 1) 2-Chloro-6,7-dimethoxy-4-(3-(morpholin-4-ylcarbonyl) anilino)quinazoline (**Xa**)
- 2) 2-Chloro-4-(3-(cyclohexylaminocarbonyl)anilino)-6,7-di methoxyquinazoline (**Xb**)
- 3) 4-(3-(Benzylaminocarbonyl)anilino)-2-chloro-6,7-dimeth oxyquinazoline (**Xc**)
- 4) 2-Chloro-6,7-dimethoxy-4-(3-((ethyl piperazin-1-ylcarbox-ylate)-4-ylcarbonyl)anilino)quinazoline (**Xd**)
- 5) 2-Chloro-6,7-dimethoxy-4-(3-(piperidin-1-ylcarbonyl)anilino)quinazoline (**Xe**)
- 6) 2-Chloro-6,7-dimethoxy-4-((3-(2-phenylethyl)aminocarbon-yl)anilino)quinazoline (**Xf**)
- 7) 2-Chloro-6,7-dimethoxy-4-(3-(isopropylaminocarbonyl)an-ilino)quinazoline (**Xg**)
- 8) 2-Chloro-6,7-dimethoxy-4-(3-(t-butylaminocarbonyl)anilino)quinazoline (**Xh**)
- 9) 2-Chloro-6,7-dimethoxy-4-(3-((1-phenylpiperazin)-4-ylcarbonyl)anilino)quinazoline (**Xi**)
- 10) 4-(3-(Benzyloxy)anilino)-2-chloro-6,7-dimethoxyquinazoline (**XIa**)
- 11) 4-(3-(Allyloxy)anilino)-2-chloro-6,7-dimethoxyquinazoline (**XIb**)
- 12) 2-Chloro-4-(3-(3,4-dichlorobenzyloxy)anilino)-6,7-dimethoxyquinazoline (**XIc**)
- 13) 2-Chloro-6,7-dimethoxy-4-(3-(3-methylbenzyloxy)anilino) quinazoline (**XId**)

- 14) 4-(4-(Benzyloxy)anilino)-2-chloro-6,7-dimethoxyquinazoline (**XIe**)
- 15) 2-Chloro-6,7-dimethoxy-4-(3-(2-(morpholin-4-yl)ethoxy)an-ilino)quinazoline (**XIf**)
- 16) 2-Chloro-4-(3-(3-fluorobenzyloxy)anilino)-6,7-dimethoxy-quinazoline (**XIg**)
- 17) 4-(3-(Benzyloxy)anilino)-6,7-dimethoxyquinazolin-2(*1H*)-one (**XII**)

The structures of the synthesized compounds were confirmed by the spectral and micro-analytical analysis. Additionally, the references reviewed were listed at the end of thesis & the whole thesis was summarized in Arabic.