

BIOLOGICAL PULPING OF SOME AGRICULTURAL WASTES

Thesis
Submitted in Partial Fulfillment
of the Requirements for the Degree of
Master of Science in Microbiology

By

Douaa Hussein Abdel-Aziz Ibrahim

B.Sc. (Microbiology-Chemistry), Faculty of Women for Arts-Science and Education, Ain Shams University, 2007

Botany Department
Faculty of Women for Arts - Science and Education
Ain Shams University
2014

BIOLOGICAL PULPING OF SOME AGRICULTURAL WASTES

Thesis
Submitted in Partial Fulfillment
of the Requirements for the Degree of
Master of Science in Microbiology

By

Douaa Hussein Abdel-Aziz Ibrahim

B.Sc. (Microbiology- Chemistry), Faculty of Women for Arts- Science and Education, Ain Shams University, 2007

Under the Supervision of

Prof. Dr. Zeinab M. H.
Kheiralla
Botany Dept.
Faculty of Women for ArtsScience and Education,
Ain Shams Univ.

Prof. Dr. Said M. Badr El-DinAgricultural Microbiology Dept.
National Research Centre

Prof. Dr. Saad M. Abdel MalekAgricultural Microbiology Dept.
National Research Centre

Botany Department
Faculty of Women for Arts - Science and Education
Ain Shams University
2014

Botany Department Faculty of Women Ain Shams University

Approval sheet

BIOLOGICAL PULPING OF SOME AGRICULTURAL WASTES

By Douaa Hussein Abdel-Aziz Ibrahim

B.Sc. (Microbiology- Chemistry), Faculty of Women for Arts- Science and Education, Ain Shams University, 2007

<u>Supervisor</u>	Approved
Prof. Dr. Zeinab M. H. Kheiralla Botany Dept. Faculty of Women for Arts - Science and Education, Ain Shams Univ.	
Prof. Dr. Said M. Badr El-Din Agricultural Microbiology Dept. National Research Centre	
Prof. Dr. Saad M. Abdel Malek Agricultural Microbiology Dept. National Research Centre	

BIOLOGICAL PULPING OF SOME AGRICULTURAL WASTES

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Microbiology

By

Douaa Hussein Abdel-Aziz Ibrahim

B.Sc. (Microbiology- Chemistry), Faculty of Women for Arts- Science and Education, Ain Shams University, 2007

Under the Supervision of

Prof. Dr. Zeinab M. H. Kheiralla

Botany Dept.
Faculty of Women for Arts- Science and Education,
Ain Shams Univ.

Prof. Dr. Said M. Badr El-Din

Agricultural Microbiology Dept. National Research Centre.

Prof. Dr. Saad M. Abdel Malek

Agricultural Microbiology Dept. National Research Centre.

Arbitration Committee

Prof. Dr. Said M. Badr El-Din, Professor of Microbiology, National Research Centre.

Prof. Dr. Zeinab M. H. Kheiralla- Professor of Microbiology, Faculty of Women, Ain Shams University.

Prof. Dr. Mohamed Ibrahim Ali- Professor of Microbiology- Cairo university.

Prof. Dr. Mohamed Elsayed Osman- Professor of Microbiology-Helwan university.

Botany Department
Faculty of Women for Arts - Science and Education
Ain Shams University- 2014

This thesis has not been submitted for any degree at this or any other university

Signed

Douaa Hussein Abd-El Aziz

ACKNOWLEDGMENT

A special word of thank goes to **Dr. Zeinab Kheiralla**, Professor of Microbiology, Faculty of Women for Arts- Science and Education, Ain Shams University, for her encouragement and her interest in this work. Also a great thanks to **Dr. Said M. Badr El-Din**, Professor of Agriculture Microbiology, National Research Centre, for suggesting the topic of this thesis, earnest supervision, patience, valuable advises, and for offering every possible help.

I would like to express my great appreciation for **Dr. Saad M. Abdel Malek,** Professor of Agriculture Microbiology, National Research Centre, for his valuable advices and supervision.

I want to thank all my professors in the Botany Department, Faculty of Women for Arts- Science and Education and all members of the Department. Thanks are also extended to all staff members (my Professors and my colleagues) in the Agriculture Microbiology Department, the National Research Centre, for the warm feeling of the one family spirit, and for everyone gave me a hand of help.

Dedication

I would like to dedicate this thesis to my wonderful family (my beloved father Hussein, my beloved mother Souad, my great husband Ahmed and my dearest sister Ghada). All words of thanks and gratitudes will not be enough for all what they have done for me, and for their continuous help, support and encouragement.

Douaa Hussein Abd-El Aziz

BIOLOGICAL PULPING OF SOME AGRICULTURAL WASTES

By

Douaa Hussein Abdel-Aziz Ibrahim

ABSTRACT

The present work aims to evaluate the fungal pretreatments for use in biopulping processes of agricultural wastes (rice straw). Therefore, Sixty two fungal isolates were screened for lignin peroxidase production. The most potent isolates for the lignin peroxidase production were identified as *Phanerochaete* chrysosporium and Pleurotus ostreatus using DNA sequence of Internal Transcribed Spacer (ITS) region. The optimization cultural conditions for the optimum production of lignin peroxidase were investigated. Of the media used, Sabouraud broth medium showed the highest production of lignin peroxidase with both fungal isolates. Lignin peroxidase production has been optimized for these isolates using the following conditions; pH 5.0, temperature 30 °C, agitation at 100 rpm and 4 days of incubation. Fungal discs have been found to be the most suitable inoculums than mycelia suspension. Urea as a sole Nsource and fructose as a sole C-sources were more suitable for lignin peroxidase production at concentration of 0.30 and 3.0 %, respectively. The pretreatment of rice straw with P. chrysosporium, Pl. ostreatus or lignin peroxidase for use in biopulping process was studied. Pretreatment of rice straw with P. chryosporium for 25 days resulted in a substantial decrease in pulp yield (by 9.1 %) and kappa number (by 25.6 %). Losses of pulp yield and kappa number were considerably low with lignin peroxidase treatment (3.7 and 14.1 %, respectively). However, the pretreatment of rice straw with Pl. ostreatus isolate caused moderate pulp yield losses (5.8 %) and preferential lignin degradation (as kappa number losses by 34.6 %). This indicated that the isolate of Pl. ostreatus might be superior to isolate of P. chrysosporium and lignin peroxidase for use in biopulping process or other processes in which preferential lignin degradation is desired.

Key words:

Biopulping, *Phanerochaete chrysosporium*, *Pleurotus ostreatus*, Lignin peroxidase, rice straw.

CONTENTS

INTRODUCTION	1
AIM OF THE WORK	3
REVIEW OF LITERATURE	4
Lignin biodegradation	8
Production conditions of lignin degrading peroxidases	12
Pulping and its types	23
1 1 6	26
MATERIAL AND METHODS	30
1-Materials	30
1-1-Compost samples	30
1-2-Rice straw	30
1-3-Microorganisms	30
	30
1-5-Reagents used for molecular techniques	31
1-6-Reagents used for kappa number determinations	32
2-Methods	32
2-1-Isolation of fungi	32
2-2-Selection of the potent isolates for lignin peroxidase	
production	33
2-3-Lignin peroxidase assays	33
2-4-Dry biomass measurement	34
2-5-1-Extraction of genomic DNA	34
2-5-2-PCR amplification	35
2-5-3-DNA sequencing	36
2-5-4-Phylogenetic analysis	36
2-6-Optimization factors	37
2-6-1-Effect of different types of media	37
2-6-2 Effect of incubation periods	37
2-6-3-Effect of inoculum type and size	38
2-6-4-Effect of different incubation temperature	38
2-6-5-Effect of different initial pH	38
2-6-6-Effect of different agitation speeds	39
2-6-7-Effect of different carbon sources	39
2-6-8-Effect of different concentrations of carbon source	40

CONTENTS

2-6-9-Effect of different nitrogen sources	40
2-6-10-Effect of different concentrations of nitrogen source	41
2-7-Inoculum preparation	41
2-8-Partial purification of lignin peroxidase	42
2-9-Fungal pretreatment of rice straw	42
2-10-Alkaline pulping	43
2-11-Kappa number determination	43
2-12-Protein content	45
2-13-Moisture content	45
2-14-Ash content	45
2-15-Cellulose, hemicelluloses, lignin contents	45
2-16-Water holding capacity	46
2-17- Statistical analysis	46
RESULTS	47
Screening for the lignin peroxidase production from locally	
isolated fungi	47
PCR and DNA sequencing	49
Phylogenetic analysis	49
Physiological parameters affecting the lignin peroxidase	
production	52
Effect of different types of media and incubation periods	52
Effect of inoculums type and size	57
Effect of incubation temperature	59
Effect of initial pH	63
Effect of agitation	66
Effect of different carbon sources	69
Effect of different concentrations of fructose	72
Effect of different nitrogen sources	75
Effect of different concentrations of urea	78
Fungal pretreatment of rice straw	81
DISCUSSION	85
SUMMARY	94
REFERENCES	99

List of Tables

Tables Number	Titles	Pages
Number		
Table (1):	Lignin peroxidase activities for fungal isolates (U/ml).	48
Table (2):	Effect of different types of media on the enzymatic activity and mycelium dry weight of <i>P. chrysosporium</i> .	54
Table (3):	Effect of different types of media on the enzymatic activity and mycelium dry weight of <i>Pl. ostreatus</i> .	54
Table (4):	Effect of the inoculums type and size on the enzymatic activity and mycelium dry weight of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i> .	58
Table (5):	Effect of the incubation temperature on the enzymatic activity and mycelium dry weight of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i> .	61
Table (6):	Effect of initial pH on the enzymatic activity and mycelium dry weight of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i> .	64
Table (7):	Effect of agitation on the enzymatic activity and mycelium dry weight of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i> .	67
Table (8):	Effect of different carbon sources on the enzymatic activity and mycelium dry weight of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i> .	70
Table (9):	Effect of different fructose concentrations on the enzymatic activity and mycelium dry weight of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i> .	73
Table (10):	Effect of different nitrogen sources on the enzymatic activity and mycelium dry weight of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i> .	76
Table (11):	Effect of different urea concentrations on the enzymatic activity and mycelium dry weight of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i> .	79
Table (12):	Effect of fungal and lignin peroxidase pretreatment of rice straw on pulp yield, ash content and kappa number.	83

List of Figures

Figure	Titles	Pages
Number		
Figure (1):	Lignin from gymnosperms showing the different linkages between the phenylpropane units. Angiosperm lignin is very similar, but phenylpropane units contains two methoxyl groups in ortho position to oxygen.	8
Figure (2):	Lignin peroxidase activities for fungal isolates during incubation periods.	48
Figure (3):	DNA sequences of ITS (Internal Transcribed Spacer) region of isolated No.21	50
Figure (4):	DNA sequences of ITS (Internal Transcribed Spacer) region of isolated No. 43	50
Figure (5):	The phylogenetic tree shows relationship neighbour-joining method between isolate No. 21 and other known sequences.	51
Figure (6):	The phylogenetic tree shows relationship neighbour-joining method between isolate No. 43 and other known sequences.	51
Figure (7):	Effect of different types of media on the enzymatic activity of <i>Phanerochaete chrysosporium</i> .	55
Figure (8):	Effect of different types of media on the mycelium dry weight of <i>Phanerochaete chrysosporium</i> .	55
Figure (9):	Effect of different types of media on the enzymatic activity of <i>Pleurotus ostreatus</i> .	53
Figure (10):	Effect of different types of media on mycelium dry weight of <i>Pleurotus ostreatus</i> .	56
Figure (11):	Effect of the inoculums type and size on the enzymatic activity of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i> .	58
Figure (12):	Effect of the inoculums type and size on mycelium dry weight of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i> .	59
Figure (13):	Effect of the incubation temperature on the enzymatic activity of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i> .	62

LIST OF FIGURES

Figure (14):	Effect of the incubation temperature on mycelium	62
	dry weight of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i> .	
Figure (15):	Effect of initial pH on the enzymatic activity of <i>P</i> .	65
	chrysosporium and Pl. ostreatus.	
Figure (16):	: Effect of initial pH on mycelium dry weight of P.	
	chrysosporium and Pl. ostreatus.	
Figure (17):	Effect of agitation on the enzymatic activity of <i>P</i> .	68
	chrysosporium and Pl. ostreatus.	
Figure (18):	Effect of agitation on mycelium dry weight of <i>P</i> .	
	chrysosporium and Pl. ostreatus.	
Figure (19):	Effect of different carbon sources on the enzymatic	71
	activity of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i>	
Figure (20):	Effect of different carbon sources on mycelium dry	71
	weight of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i>	
Figure (21):	Effect of different fructose concentrations on the	74
	enzymatic activity of P. chrysosporium and Pl.	
	ostreatus.	
Figure (22):	Effect of different fructose concentrations on	74
	mycelium dry weight of <i>P. chrysosporium</i> and <i>Pl.</i>	
	ostreatus.	
Figure (23):	Effect of different nitrogen sources on the	77
	enzymatic activity of <i>P. chrysosporium</i> and <i>Pl.</i>	
	ostreatus.	
Figure (24):	Effect of different nitrogen sources on mycelium	77
	dry weight of <i>P. chrysosporium</i> and <i>Pl. ostreatus</i> .	
Figure (25):	Effect of different urea concentrations on the	80
	enzymatic activity of <i>Phanerochaete</i>	
	chrysosporium and Pleurotus ostreatus.	
Figure (26):	Effect of different urea concentrations on	80
	mycelium dry weight of <i>P. chrysosporium</i> and <i>Pl.</i>	
	ostreatus.	
Figure (27):	Effect of fungal and lignin peroxidase	84
	pretreatments of rice straw on pulp yield.	
Figure (28):	Effect of fungal and lignin peroxidase	84
	pretreatments of rice straw on kappa number.	

List Of Abbreviations

Abbreviation	Word
Вр	Base pair
C-source	Carbon source
CTMP	combination thermo mechanical process
DO	Dissolved oxygen
ITS	Internal transcribed spacer
KDa	KiloDalton
Lac	Laccase
LDPs	Lignin degrading peroxidase enzymes
LiP	Lignin peroxidase
MEB	malt extract broth
MnP	Manganese peroxidase
MSB	mineral salt broth
P. chrysosporium	Phanerochaete chrysosporium
PCR	Polymerase Chain Reaction
PDA	Potato dextrose medium
pI	Isoelectric point

List Of Abbreviations

Pleurotus ostreatus
Round per minute
thermomechanical pulp
Veratryl alcohol
Weight per volume