

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار

في درجة حرارة من ١٥-٥٠ مئوية ورطوية نسبية من ٢٠-٠٠%. To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

بعض الوثائق الاصلبة تالفة

بالرسالة صفحات لم ترد بالاصل

Antimicrobial characteristics of a bacteriocin produced by Lactobacillus delbrueckii against food-borne pathogens and pathogenic organisms

Presented by
Doaa Helmy Abdel Baky
B.SC. (2004)

Thesis Submitted to Faculty of Science

In Partial Fulfillment of the Requirements for the Degree of master of Science (MICROBIOLOGY)

Botany Department
Faculty of Science
Cairo University
2010

CCY9

Abstract

Abstract

Student Name: Doaa Helmy Abdel Baky.

Title of the thesis: Antimicrobial characteristics of a bacteriocin produced by Lactobacillus delbrueckii against food-borne pathogens and pathogenic organisms.

Degree: Master (Microbiology).

Five lactic acid bacteria isolated from traditional fermented foods were tested for antimicrobial activity towards food poisoning and pathogenic indicators.

One isolate showed the widest range of antimicrobial activity and was identified as *Lactobacillus delbrueckii*. The kinetics of bacteriocin production by LAB in relation to process factors have been studied in detail.

Bacteriocin produced by *Lactobacillus delbrueckii* had maximal activity in MRS medium at initial pH 7.0, and 24h incubation period at 30°C, it was found that supplementation with glucose, lactose, peptone, yeast extract and meat extract enhanced the production of bacteriocin.

The purified antimicrobial agent had heat stability where the activity remained constant after heating at 60°C for 60 min, and at autoclaving temperature 121°C for 30 min.

The maximum antimicrobial activity was retained within a wide pH range (4.0-8.0) and sharply decreased at pH 3.0 and 9.0.

The active principle was proteinaceous in nature since the bacteriocin was inactivated by proteolytic enzymes. Surfactants and organic solvents (acetone and chloroform) and UV light did not affect the activity of bacteriocin. The bacteriocin kept its activity on storing for 60 days at 4°C.

Keywords: Lactic acid bacteria; Bio-preservation; *Lactobacillus delbrueckii*; Inhibitory activity; Bacteriocin; Bacteriocin purification; Pathogenic and food poisoning organisms.

Supervisors:

1- Prof. Dr. Youssry El-said Saleh

2- Prof. Dr. Hanaa Ali El-shafei

Signature:

prof. Dr. Homa Elstofer

Prof. Dr. Maimona Abd El Azez Kord

Chairman of Botany Department Faculty of Science Cairo University

there

APROVAL SHEET FOR SUMISSION

Thesis Title: Antimicrobial characteristics of a bacteriocin produced by Lactobacillus delbrueckii against food-borne pathogens and pathogenic organisms.

Name of candidate: Doaa Helmy Abdel Baky This thesis has been approved for submission by the supervisors:

1- Prof. Dr. Youssry El-said Saleh

Botany Department, Faculty of Science, Cairo, University

Signature:

2- Prof. Dr. Hanaa Ali El-shafei

Head of Microbial Chemistry Department, National Research Center:

Signature: prof. Dr. Hanaa El-shafu

Prof. Dr. Maimona Abd El Azez Kord

Chairman of Botany Department Faculty of Science-Cairo University

Acknowledgement

At first, I would like to thank our god that allowing me to achieve this work, without his bless any great effort is invaluable.

I am grateful to Prof. Dr Hanaa Ali El-shafei, Head of Microbial Chemistry Department, National Research Center, to whom I will be forever grateful, for her generous help and guidance and for the support she gave me through difficult times. She always welcoming attitude for discussion, and continuous guidance in research and her unlimited help in writing this thesis. I will always be in debt for her guidance and kindness.

I am grateful to Prof. Dr. Youssry El-said Saleh, Prof. of Microbiology, Faculty of Science, Cairo University, for his supervision, encouragement and helpful advise, providing excellent guidance in research he have been helpful in many ways throughout my studies.

I would like also to express my heartfelt sense of gratitude to my colleagues, friends and all members of the Microbial Chemistry Department, National Research Center for their continuous encouragement and help through all the stages of this work.

With all my love I would like to extend my deepest gratitude and thanks to my brother, sister and my husband.

Dedication

I would like to dedicate this work to my parents, that seeded my curiosity and desire for knowledge and thanking them for their unlimited effort, patient and invocation that is unquestionable honored.

To Whom It May Concern

The present thesis is submitted to the Faculty of Science, Cairo University in partial fulfillment for the requirements of the degree of Master of Science in Botany (Microbiology).

Beside the research work materialized in this thesis, the candidate attended eleven postgraduate courses for one academic year in the following topics:

- 1. Soil Microbiology
- 2. Bacteriology
- 3. Applied microbiology
- 4. Virology
- 5. Hydrobiology
- 6. Analytical chemistry
- 7. Radiobiology
- 8. Tissue culture
- 9. Host-parasite relationships
- 10. Biostatistics.
- 11. German Language

The candidate has successfully passed the final examination in these courses held in October 2005.

Prof. Dr. Maimona Abd El Azez Kord

Chairman of the Botany Department Faculty of Science, Cairo University

CONTENT

List of content

Introduction	l
Aim of the work	5
Review of Literature	6
Lactic Acid Bacteria (LAB)	6
History of Lactic Acid Bacteria	8
LAB bacteriocins as biopreservatives	15
LAB and Health	24
Managing Lactose Intolerance	25
Gastro intestinal tract diseases	25
Alleviation of Diarrhea	26
Inhibition of Helicobacter pylori	
Lowering blood Cholesterol	
Lowering Blood Pressure	
Immune Function	
-IgA	30
-Phagocytosis	31
-T-Cells and NK Cells.	
-Respiratory Infections	32
Inflammation and Allergies	32
-Prevent Allergies	33
-Treatment of Inflammatory Bowel Disease (IBD)	33
Antibiotic resistance	34
0	35

Materials and Methods	38
Materials:	38
1. Media	
2. Bacterial strains	
Methods:	
1. Isolation of lactic acid bacterial strains from food	44
2. Screening procedure and Bacteriocin bioassay	44
3. Identification of selected strain	45
3.1. Acid neutralization test	
3.2. Sensitivity to catalase	46
4. Production of Bacteriocin	47
5. Influence of optimum growth conditions on the production of an	timicrobial
substance (bacteriocin) by Lactobacillus delbrueckii	47
5.1. Bacteriocin production in different growth media	47
5.2. Bacteriocin production using different raw material	48
5.3. Effect of different pH values	48
5.4. Effect of different incubation temperatures	48
5.5. Effect of different incubation periods	49
5.6. Effect of different inoculum size	49
5.7. Effect of aeration	49
6. Effect of the different nutrient supplements on the producti	on of the
antimicrobial substance (bacteriocin)	50
6.1. Effect of different carbon sources	50
6.2. Effect of different glucose concentrations	50
6.3. Effect of different Sulphur sources	50
6.4. Effect of different organic nitrogen sources	
6.5. Effect of different concentrations of meat extract	51
6.6.Effect of different concentrations of yeast extract	51
6.7 Effect of different peptone concentrations	52