ROLE OF ULTRASOUND IN DIAGNOSIS OF MAJOR AND MODERATE FORMS OF FETAL CONGENITAL HEART DEFECTS

THESIS

In partial fulfillment of Master Degree In obstetrics & gynecology

SUBMITTED BY:
Islam Mustafa Mahmoud Badr
M.B.B.CH, Cairo University

Supervised by:

PROF.DR. ASSEM ANWAR ABDO MOUSA

PROF. OF OBSTETRICS AND GYNECOLOGY FACULTY OF MEDICINE, AL-AZHAR UNIVERSITY

PROF.DR.ALAA ELDIN NAGIUB ELEBRASHY

PROF. OF OBSTETRICS AND GYNECOLOGY FACULTY OF MEDICINE, CAIRO UNIVERSITY

PROF.DR.FAHD ABD EL AAL EL OMDA

ASS. PROF. OF OBSTETRICS AND GYNECOLOGY FACULTY OF MEDICINE, AL-AZHAR UNIVERSITY

Faculty of Medicine Al-Azhar University 2014

وَلَقَدْ خَلَقْنَا الْإِنسَانَ مِن سُلَالَةٍ مِّن طِينِ {12} ثُمَّ خَلَقْنَا ثُمَّ جَعَلْنَاهُ نُطْفَةً فِي قَرَارِ مَّكِينِ {13} ثُمَّ خَلَقْنَا النُّطْفَةَ عَلَقَةً مُضْغَةً فَخَلَقْنَا الْعَلَقَةَ مُضْغَةً فَخَلَقْنَا الْعَظَامَ لَحْمًا ثُمَّ أَنشَأْنَاهُ الْمُضْغَةَ عِظَامًا فَكَسَوْنَا الْعِظَامَ لَحْمًا ثُمَّ أَنشَأْنَاهُ خَلْقًا آخَرَ فَتَبَارَكَ الله أَحْسَنُ الْخَالِقِينَ {14} خَلْقًا آخَرَ فَتَبَارَكَ الله أَحْسَنُ الْخَالِقِينَ {14}

صَّنَ فَ اللهُ الْعَظَمِينَ،

سورة المؤمنون الأيات 12-14

List of Contents

	Title	Page
Acknowledgement		I
	previations	П
List of Tab	les	Ш
_	ıres	IV
_		V
	on	1
	Work	3
	Literature	4
	Chapter I: Ultrasound Physics and Instrumentation	5
	Chapter II: Normal Ultrasonic Anatomy and	
	Physiology of the Fetal Heart	29
	Chapter III: Sonographic Features of Abnormal Fetal	
	Hearts	58
	Chapter IV: Modern Techniques in Fetal	
	Echocardiography	109
	Chapter V: Fetal Echocardiography: Cost	
	Effectiveness, Accuracy and Impact on Neonatal	
	Outcome	129
Patients ar	nd Methods	146
Results		153
Discussion		172
Conclusion		183
Recommendations		184
Summary		185
References		188
	nmary	212

Acknowledgement

At first and foremost, I thank the great God who gave me the power to finish this work.

No wards can express my gratitude to Prof. Dr. Assem Anwar, Professor of Obstetrics and Gynecology, Faculty of Medicine, Al-Azhar University for his unlimited support and paternal advice. I was honored to work under his supervision.

I want to express my deepest gratitude to prof. Dr. Alaa El-Ebrashy, Professor of Obstetrics and Gynecology, Faculty of Medicine, Cairo University for his sincere supervision and advice. I was privileged to work under his generous supervision.

To **Prof. Dr.Fahd El-Omda**, Associate Professor of Obstetrics and Gynecology, Faculty of Medicine, Al-Azhar University I owe a lot of thanks and gratitude for his support, patience and supervision.

I want also to express my deepest gratitude to Dr. Ibraheem El-Handaleeshy, Associate Professor of Obstetrics and Gynecology, Faculty of Medicine, Al-Azhar University for his effort, sincere support and continuous advice.

To my parents, no words can express my gratitude for you; you are really the gifts of the great God.

To my family, colleagues and everyone participated in this work by a way or another I owe my appreciation.

List of Abbreviations

an.	T. 11 1 1	1 MD	1
2D	two-dimensional	MPa	megapascal
3D	three-dimensional	MR	mitral regurgitation
4D	four-dimensional	NC	Non-compaction
ADF	advanced dynamic flow	PA	pulmonary artery
AIUM	American institute of ultrasound in	PA: IVS	pulmonary atresia with intact
_	medicine		ventricular septum
Ao	Aorta	PDU	power Doppler ultrasound
APVS	absent pulmonary valve syndrome	PI	pulsatility index
ARSA	aberrant right subclavian artery	PJRT	permanent junctional reciprocating tachycardia
AS	aortic stenosis	PR	pulmonary regurgitation
ASA	atrial septal aneurysm	PS	pulmonary stenosis
ASD	atrial septal defect	PSV	peak systolic velocity
AV	atrioventricular	PSVT	paroxysmal supraventricular tachycardia
AVB	atrioventricular block	PZT	Lead zirconate titanate
	atrioventricular nodal reentrant		
AVNRT	tachycardia	RAA	right aortic arch
AVRT	atrioventricular reentrant tachycardia	RAI	right atrial isomerism
AVSD	atrioventricular septal defect	RI	resistance index
ccTGA	congenitally corrected transposition of the great arteries	ROI	region of interest
CDF	color Doppler flow	RVOT	right ventricular outflow tract
CHD	congenital heart disease	SD	standard deviation
CHF	congestive heart failure	SIV	situs inversusus
CM	cardiomyopathy	SonoAVC	sonographic automated volume calculation
DORV	double-outlet right ventricle	STIC	spatio-temporal image correlation
EDF	end-diastolic flow	SV	Single ventricle
EFE	endocardial fibroelastosis	SVC	superior vena cava
Hb.	hemoglobin	SVT	Supraventricular tachycardia
HIFU	high-intensity focused ultrasound	TA	tricuspid atresia
HLHS	hypoplastic left heart syndrome	TAPVC	total anomalous pulmonary venous connection
HRHS	hypoplastic right heart syndrome	TCI	tissue compound imaging
Hz	Hertz	TDI	tissue Doppler imaging
IAA	interrupted aortic arch	Tei	myocardial performance index
IPT	intraperitoneal transfusion	TF4	tetralogy of Fallot
ICT	isovolumic contraction time	TGA	transposition of the great arteries
IRT	isovolumic relaxation time	TI	thermal index
ISUOG	International Society of Ultrasound		
	in Obstetrics and gynecology	TIB	thermal index for bone
IVC	inferior vena cava	TIC	thermal index for cranial bone
IVS	intact ventricular septum	TIS	thermal index for soft tissue
IVT	intravascular transfusion	TR	tricuspid regurgitation
KHz	kilohertz	TUI	tomographic ultrasound imaging
LAI	left atrial isomerism	US	ultrasound
LSVC	left superior vena cava	VCAD	volume computer aided diagnosis
LVNC	left ventricular non-compaction cardiomyopathy	VCI	volume contrast imaging
LVOT	left ventricular outflow tract	VOCAL	volume computer aided analysis
MHz	megahertz	VOI	volume of interest
MI	mechanical index	VSD	ventricular septal defect

List of Tables

Table No.	Title	Page
1	Descriptive statistics	153
2	The position of the placenta in the diagnosed cases	154
3	The amount of the amniotic fluid in the diagnosed cases	155
4	The number of vessels in the umbilical cords of the diagnosed cases	156
5	The diagnostic plane	157
6	The percentage of male to female in the diagnosed cases	158
7	The severity of the prenatally diagnosed congenital heart diseases	159
8	The percentage of heart failure in the diagnosed cases	160
9	The overall prevalence of major and moderate congenital heart disease	161
10	The prevalence of specific congenital heart defects	163
11	The percentage of the associated anomalies	166
12	The percentage of associated non-chromosomal defects	167
13	The percentage of cases which were associated with ultrasound markers of chromosomal abnormalities	168
14	The percentage of associated specific extracardiac non- chromosomal anomalies	169

List of Figures

Figure No.	Title	Page
1	Ultrasound transducer	10
2	Axial and lateral resolution	12
3	Wavelength, amplitude and frequency	13
4	Reflection, refraction and attenuation	16
5	Tissue harmonic and frequency compound imaging	17
6	The Doppler equation	20
7	Resistance indices for Doppler waveform analysis	22
8	Multiplanar mode with 3D surface reconstruction	24
9	Normal four-chamber view	37
10	Septum primum and foramen ovale	38
11	Fetal cardiac axis	40
12	Pulmonary veins	42
13	Color Doppler of the four-chamber view	43
14	Left ventricular outflow tract	44
15	Pulmonary outflow tract	45
16	Three-vessel view	46
17	Short axis view at the base of the fetal heart	47
18	Longitudinal view of the aortic arch	48
19	Sagittal view of the ductal arch	49
20	Caval long-axis view	49
21	Mitral E/A waveform	51
22	Pulsed Doppler of the ascending aorta	52
23	Tei index measurement	53
24	M-mode of the fetal heart	54
25	Tissue Doppler of the fetal heart	55
26	Simultaneous pulsed Doppler of pulmonary artery and vein	56
27	Mechanical PR interval	57
28	Atrial septal defect in the context of AV canal	60
29	VSD depiction by power Doppler	61
30	Normal atrioventricular valves	62
31	Atrioventricular septal defect	63
32	Atrial septal aneurysm	65
33	Ebstein's anomaly	66
34	Tricuspid valve atresia	67
35	Stenotic tricuspid valve	68

36	Dysplastic tricuspid valve	69
37	Hypoplastic right heart	71
38	Hypoplastic left heart	72
39	Absent pulmonary valve syndrome	74
40	Pulmonary atresia with intact ventricular septum	75
41	Right atrial isomerism	78
42	Left atrial isomerism	80
43	Ectopia cordis	81
44	Tetralogy of Fallot	83
45	Double outlet right ventricle	84
46	Transposition of the great arteries	86
47	Congenitally corrected TGA	87
48	Common arterial trunk	88
49	Aortic coarctation	89
50	Interrupted aortic arch	90
51	Aberrant right subclavian artery	91
52	Right aortic arch	92
53	Vascular ring	93
54	Supracardiac TAPVC	94
55	Interrupted IVC	95
56	Dilated cardiomyopathy	98
57	Non-compaction cardiomyopathy	99
58	Rhabdomyoma	100
59	Simultaneous Doppler placement on aorta and SVC	102
60	Mechanical PR interval	103
61	Atrial flutter	104
62	Supraventricular tachycardia	105
63	Echogenic cardiac focus	108
64	Multiplanar reconstruction	111
65	Four-chamber view: Surface volume rendering	114
66	Spin technique	115
67	Tomographic ultrasound imaging	116
68	Inversion mode	117
69	Inversion mode in a fetus with TGA	118
70	B-flow	119
71	VOCAL: Fetal heart volume assessment	121
72	SonoAVC: Measurement of the fetal right ventricular	122
72	volume	122
73	SonoAVC: Hypoplastic left heart syndrome	123
74	3D color Doppler	124
75	3D color Doppler measurement of cardiac output	125
76	3D power Doppler: Four-chamber view	126

77	Advanced dynamic flow: Aortic overriding	127
78	Multiplanar M-mode reconstruction	128
79	The position of the placenta	154
80	The amount of amniotic fluid in the diagnosed cases	155
81	The number of vessels in the umbilical cord	156
82	The diagnostic plane	157
83	The percentage of male to female in CHD	158
84	Severity of the prenatally diagnosed CHD	159
85	The percentage of associated heart failure	160
86	The prevalence of major and moderated CHD	161
87	Prevalence of specific congenital cardiac defects	165
88	Percentage of cases with associated anomalies	166
89	Percentage of associated non-chromosomal defects	167
90	Percentage of cases associated with ultrasound markers of chromosomal defects	168
91	Percentage of associated specific extracardiac non- chromosomal anomalies	169
92	Tetralogy of Fallot	170
93	Truncus arteriosus	170
94	Persistent left superior vena cava	171

Abstract

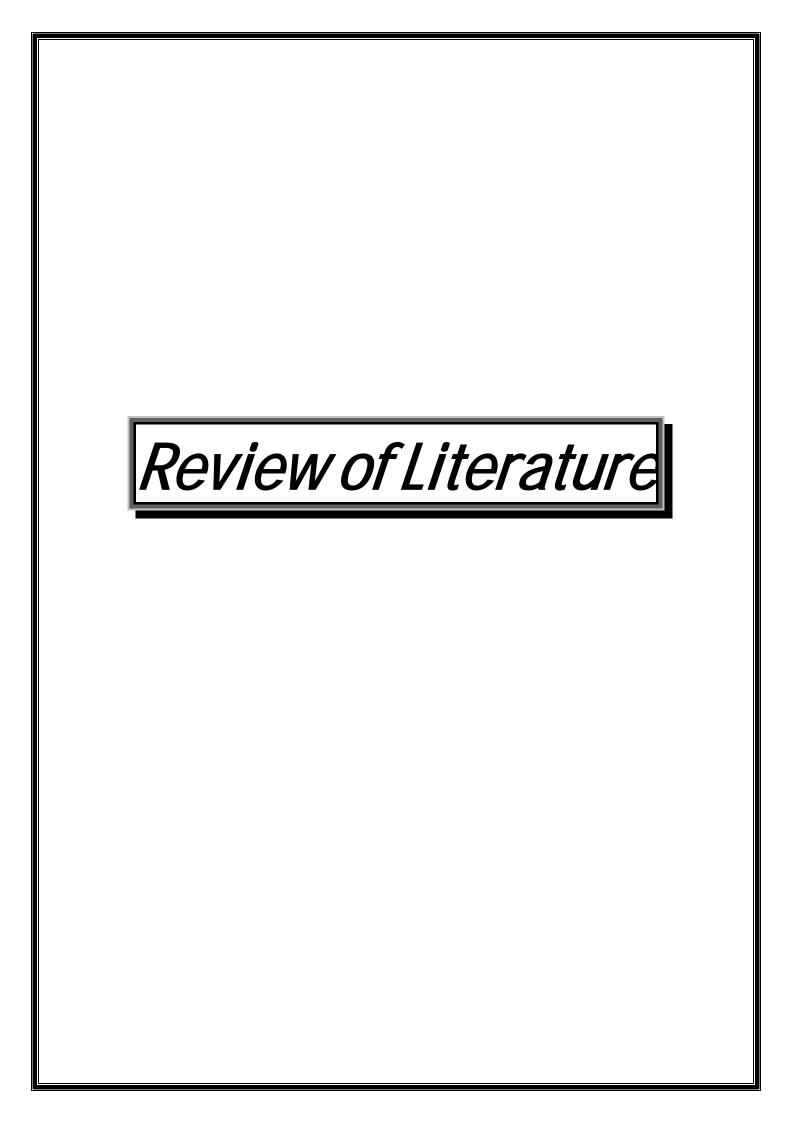
Objective: To review the sonographic diagnostic criteria of the fetal congenital heart anomalies and to evaluate the prenatal incidence of fetal cardiac anomalies and also to determine the prenatal pattern of CHD among pregnant Design: attending the unit. women Retrospective observational study. Setting: Cairo University Fetal Medicine Unit. Subjects: 3666 pregnant women in the second and third trimesters were included in this study among patients attended Cairo University Fetal Medicine Unit in the period from January 2012 to April 2013. Methods: Retrospective review of the fetal congenital anomaly scans of all the 3666 pregnant women included in the study. All of these patients underwent the congenital anomaly scan to check for the integrity of the different fetal organs. Results: Out of the 3666 patients included in this study, 70 cases were diagnosed as major and moderate CHD with 1.9% as the estimated prevalence. There was no significant different between male (17.1%) and female (18.6%) in this study. The major forms were ten folds higher than the moderate forms. The most common congenital anomalies diagnosed in this study were VSD (34.3%) then HLHS (21.4 %) followed by AVSD (20%) in order of frequency. In 55.7% of the cases there were associated anomalies with the ultrasound markers of chromosomal anomalies present in 34.3% of the cases. *Conclusion:* The prenatal pattern of CHD differs from its postnatal pattern with dominance of the severe forms. The prenatally diagnosed cases carry poorer prognosis than those diagnosed postnatally with high associations with other anomalies especially the chromosomal defects.

Introduction

The total prevalence of major congenital anomalies is 23.9 per 1,000 live births with the congenital heart defects being the most common non-chromosomal subgroup (Dolk et al., 2010).

The incidence of severe congenital heart disease that will require expert cardiologic care is quite stable at about 2.5 to 3/1,000 live births. The moderately severe forms of CHD probably account for another 3 per 1,000 live births making the incidence of moderate and severe forms of CHD about 6/1,000 live births (Hoffman and Kaplan, 2002).

Prenatal diagnosis is associated with decreased neonatal morbidity, including decreased use of mechanical ventilation, antibiotics, and emergent surgery. Advanced prenatal knowledge of an indication for cardiac surgery may allow for the optimization of factors beyond immediate neonatal resuscitation that affect neonate survival, including labor, delivery, and operative repair (*Levey et al., 2010*).


Congenital heart disease screening should be offered and performed in all pregnant women as more than 90 percent of congenital heart disease occurs in low risk population (Ahmed et al., 2007).

The basic and extended basic cardiac ultrasonographic examinations are designed to maximize the detection of congenital heart disease during a second-trimester scan (Salomon et al., 2006).

Severe congenital heart disease includes the majority of the patients who present as severely ill in the newborn period or early infancy. Some of these patients who die very early might not be included in studies that do not track every infant born. Moderate congenital heart disease requires expert care, but less intensive than severe forms. Mild congenital heart disease is the most numerous group. These patients are asymptomatic; many not have significant murmurs and often undergo early spontaneous resolution of their lesions (Hoffman and Kaplan, 2002).

Aim of the work

The purpose of this retrospective study is to review the sonographic diagnostic criteria of the fetal congenital heart anomalies and to evaluate the incidence of fetal cardiac anomalies in women attending kasr El-Aini Fetal Medicine Unit.

